Page:Popular Science Monthly Volume 26.djvu/261

From Wikisource
Jump to: navigation, search
This page has been proofread, but needs to be validated.

By JULES JAMIN, of the Institute of France.

THE earlier experiments of MM. Cailletet and Raoul Pictet in the liquefaction of gases, and the apparatus by means of which they performed the process, were described in "The Popular Science Monthly," March and May, 1878. The experiments have since been continued and improved upon by MM. Cailletet and Pictet, and others, with more complete results than had been attained at the time the first reports were published, and with the elucidation of some novel properties of gases, and the disclosure of relations, previously not well understood, between the gaseous and the liquid condition. The experiments of Faraday, in the compression of gases by the combined agency of pressure and extreme cold, left six gases, which still refused to enter into the liquid state. They were the two elements of the atmosphere (oxygen and nitrogen), nitric oxide, marsh-gas, carbonic oxide, and hydrogen. Many new experiments were tried before the principle that governs the change from the gaseous to the liquid, or from the liquid to the gaseous form, was discovered. Aimé sank manometers filled with air into the sea till the pressure upon them was equal to that of four hundred atmospheres; Berthelot, by the expansion of mercury in a thermometer-tube, succeeded in exerting a pressure of seven hundred and eighty atmospheres upon oxygen. Both series of experiments were without result. M. Cailletet, having fruitlessly subjected air and hydrogen to a pressure of one thousand atmospheres, came to the conclusion that it was impossible to liquefy those gases at the ordinary temperature by pressure alone. Previously it had been thought that the obstacle to condensing gases by pressure alone lay in the difficulty of obtaining sufficient pressure, or in that of finding a vessel suitable for manipulation that would be capable of resisting it. M. Cailletet's thought led to the discovery of another fundamental property of gases.

The experiments of Despretz and Regnault had shown that the scope of Mariotte's law (that the volume of gases increases or diminishes inversely as the pressure upon them) was limited, and that its limits were different with different substances. Andrews confirmed the observations of these investigators, and extended them. Compressing carbonic acid at 13° C. (55° Fahr.), he found that the rate of diminution in volume increased more rapidly than Mariotte's law demanded, and at a progressive rate. At fifty atmospheres the gas all at once assumed the liquid form, became very dense, and fell to the bottom of the vessel, where it remained separated from its vapor by a clearly defined surface, like that which distinguishes water in the air. Experimenting in the same way with the gas at a higher tem-