Page:Popular Science Monthly Volume 56.djvu/697

From Wikisource
Jump to navigation Jump to search
This page has been proofread, but needs to be validated.
A HUNDRED YEARS OF CHEMISTRY.
681

In 1858 the work of Cannizzaro appeared, and a general revision of chemical formulæ became necessary. The advanced views which a few chemists had held began to find a more general acceptance, and the significance of the change was gradually realized. In the same year Kekulé showed that the atom of carbon, had a combining capacity of four, and furthermore that in many organic compounds the carbon atoms were in part united with each other, and even linked, as it were, into chains. Still later, studying benzene, he found that its six carbon atoms were best regarded as joined together in the form of a closed ring, and with this conception the idea of chemical structure received at last a definite form. These linkages of atoms, these rings and their derivatives, could all be represented graphically to the eye, in accordance with the combining power of the several elements, and so the structural formulæ of modern chemistry came into vogue. Types, substitutions, compound radicles, were all covered by and included in the new generalization, and each of the older theories was seen to be but an expression of special cases, rather than of any general law. No truth was set aside, but all were co-ordinated.

To the non-chemical reader the foregoing passages may seem vague and abstruse, but in an essay of this scope greater elaboration is inadmissible. It is clear, however, that each forward step has been a logical development of the atomic theory, which, as we shall see later, does not end even here.

Thus, then, the chemical formulæ and atomic weights of Berzelius grew by slow degrees into the modern system, with its representations of structure and atomic linking. The internal architecture of the molecule was now revealed not to the imagination only, but to the eye of reason, and, speculative as the new conceptions may seem at first, they have led to astonishing practical consequences. The new formulæ at once indicated lines of research, and with their aid synthetic chemistry was greatly stimulated. True, many syntheses of organic compounds had already been made, but progress became more rapid and the work of discovery was systematized to a wonderful degree. In 1856 Perkin discovered the first of the coal-tar dyes, creating a new industry which has been assisted beyond measure by the structural symbols that came into use only a few years later. In 1868 alizarin, the coloring principle of madder, was made artificially from the hydrocarbon anthracene; a host of other colors, a veritable chemical rainbow, have been discovered; the synthesis of indigo has been effected; and within twenty years we have seen medicine enriched by a great variety of drugs, all prepared by purely chemical processes from the former waste material—coal tar. To most of this work, at