Page:Popular Science Monthly Volume 63.djvu/122

From Wikisource
Jump to: navigation, search
This page has been proofread, but needs to be validated.
118
THE POPULAR SCIENCE MONTHLY.

A closed vertical loop A1A2 (see Fig. 12) is formed by erecting two parallel insulated wires vertically a few feet apart and joining them together at the top. At the bottom these wires are connected,

PSM V63 D122 Non radiative closed loop aerial.png

Fig. 12 Non- radiative Closed Loop Aerial.

with the secondary terminals of an induction coil, a condenser C or Leyden jar being bridged across the terminals and a pair of spark balls S inserted in one side of the loop. It will readily be seen that on setting the coil in action, oscillations will take place in these vertical wires, but that if the oscillations are simply the fundamental note of the system, then at any moment corresponding to a current going up one side of the loop of wire, there must be a current coming down the other. Accordingly, an arrangement of this kind, forming what is called a closed circuit, will not radiate or radiates but very feebly. Professor Slaby found, however, that it might be converted into a powerful radiator if we give the two sides of the loop unequal capacity or inductance, and at the same time earth one of the lower ends of the loop, as shown in Fig. 13. By this means it is possible to set up in the loop electrical overtones or harmonics of the fundamental oscillation, and if we cause the system to vibrate so as to produce its first odd harmonic, there is a potential node at the lower end of both vertical sides of the loop, a potential node on both vertical sides at two thirds of the way up, and a potential antinode at the summit of the loop; then, under these circumstances, the closed loop of wire is in the same electrical condition as if two simple Marconi

PSM V63 D122 Slaby loop radiator.png

Fig. 13. Slaby's Loop Radiator.

aerials, both emitting their first odd harmonic oscillation, were placed side by side and joined together at the top.

It is a little difficult without the employment of mathematical analysis to explain precisely the manner in which earthing one side of the loop or making the loop unsymmetrical as regards inductance has the effect of creating overtones in it. The following rough illustration may, however, be of some assistance. Imagine a long spiral metallic spring supported horizontally by threads. Let this represent a conductor, and let any movement to or fro of a part of the spring represent a current in that conductor. Suppose we take hold of the spring at one end, we can move it bodily to and fro as a whole. In this case, every part of the spring is moving one way or the other in the same manner at the same time. This corresponds with the case in which the discharge of the condenser through the uniform loop con-