Page:Popular Science Monthly Volume 63.djvu/370

From Wikisource
Jump to navigation Jump to search
This page has been proofread, but needs to be validated.
366
POPULAR SCIENCE MONTHLY.

because the oscillations are damped out of existence too soon by the dielectric.

In arranging condensers to attain a given capacity, regard has to be taken of the fact that for a given potential difference there must be a certain total thickness of dielectric, and that if condensers of equal size are being arranged in parallel, it adds to their capacity, whilst joining them in series divides their capacity. If N equal condensers or Ley den jars have each a capacity represented by C and if they are joined n in series and m in parallel, the joint capacity of the whole number is mC/n, where the product mn N.

Passing on next to the consideration of oscillation transformers of various kinds—these are appliances of the nature of induction coils for transforming the current or electromotive force of electrical oscillations in a required ratio. These coils are however destitute of any iron core, and they generally consist of coils of wire wound on a fiber, wooden or ebonite frame, and must be immersed in a vat of oil to preserve the necessary insulation. No dry insulation of the nature of indiarubber or guttapercha will withstand the high pressures that are brought to bear upon the circuits of an oscillation transformer. In constructing these transformers, we have to set aside all previous notions gathered from the design of low frequency iron core transformers. The chief difficulty we have to contend against in the construction of an effective oscillation transformer is the inductance of the primary circuit and the magnetic leakage that takes place. In other words, the failure of the whole of the flux generated by the primary circuit to pass through or be linked with the secondary circuit. Mr. Marconi has employed an excellent form of oscillation transformer, in the design of which he was guided by a large amount of experience. In this transformer the two circuits are wound round a square wooden frame. The primary circuit consists of a number of strands of thick insulated cable laid on in parallel, so that it consists of only one turn of a stranded conductor. The secondary circuit consists of a number of turns, say ten to twenty, of thinner insulated wire laid over the primary circuit and close to it, so that the transformer has the transformation ratio of one to ten or one to twenty. In the arrangements devised and patented by Mr. Marconi, these two circuits, with their respective capacities in series with them, are tuned to one another, so that the time-period of each circuit is exactly the same, and without this tuning the device becomes ineffective as a transformer.[1] There is no advantage in putting a number of turns on the primary circuit, because such multiplication simply increases the inductance, and, therefore, diminishes the primary current in the same ratio which it multiplies the


  1. See British specification No. 7,777 of 1900—G. Marconi, 'Improvements in Apparatus for Wireless Telegraphy.'