Page:Popular Science Monthly Volume 63.djvu/387

From Wikisource
Jump to navigation Jump to search
This page has been proofread, but needs to be validated.
THE PROGRESS OF SCIENCE.
383

of his replies. These volumes contain papers from 1735 to 1790—the first forty four volumes, letters to him; the forty-fifth, copies of his own letters; the forty-sixth, his correspondence with his wife; the forty-seventh and forty-eighth, his own letters from 1720 to 1791; the forty-ninth, his scientific and political papers; the fiftieth, his other writings—notably his Bagatelles, those short essays which had such a vogue, and which are still read; the fifty-first, poetry and verse, his own and that of others, no doubt selected by him for use in his publications; the fifty-second, the Georgia papers—he was agent for that colony; and the remaining twenty volumes, all the multifarious correspondence, other than official, mostly during his long stay in France, his various public offices at home and abroad, his enormous correspondence about appointments from men of all nationalities, who wanted to come to America under his patronage to fight, to settle, to teach, to introduce their inventions for every imaginable and unimaginable purpose.

Both in England and France he kept all notices of meetings, such as those of the Royal Society, and other scientific bodies of which he was a member, invitations, visiting cards, notes, business cards, etc., and at home he kept copies of wills, deeds, powers of attorney, bonds, agreements, bills and drafts, checks, bills of lading, public accounts and even certified copies of acts of congress and account books. It is to be hoped that the preparation and publication of the calendar showing the contents of this rich mass of materials may be completed at no distant day, certainly by the two hundredth anniversary of the birth of Franklin.

THE EDUCATION OF ENGINEERS.

At a recent meeting of the British Institution of Mechanical Engineers, Professor W. E. Dalby read a paper on 'The Education of Engineers in America, Germany and Switzerland.' According to the report in the London Times, the author pointed out that with scientific progress, changing methods of manufacture and the advent of electricity, there has been scarcely any change in the recognized methods of training engineers. At the present time, however, there is no difficulty in obtaining scientific instruction of a high character, and a training in workshop practise second to none can be secured in the factories of this country. The weak point is the want of cooperation between the workshops and the colleges. The author proceeded to give details of the course of instruction followed at the Massachusetts Institute of Technology, Boston, U. S. A.; at Sibley College, Cornell University; at the Berlin Technical High School, and at the Swiss Federal Polytechnic School at Zurich. There is an essential difference in the methods of training in America and Germany.

In America the course of instruction is very exactly laid down; in Germany no student is compelled to take any special course, though, for his convenience, definite courses are laid down in the school calendar. At Zurich the course is partly prescribed and partly selected. The American course may be taken as 3,000 hours, distributed over four years; the continental course is 4,000 hours, distributed over three years, independently of laboratory work. The fourth year is not included, as it is cut up by examination work. In America a large proportion of the time is devoted to workshop practise; in Germany and Switzerland no time at all is thus occupied. The American courses are more practical in character and devote a large proportion of the course to the teaching of handicraft skill. In America a student finds himself with a degree or diploma at the age of twenty-one. Employers take him without premium and