Page:Popular Science Monthly Volume 7.djvu/293

From Wikisource
Jump to navigation Jump to search
This page has been validated.
THE FIRST AND THE LAST CATASTROPHE.
279

showing that the rates of vibration of all these molecules of sodium all over the universe, so far as we know, are as near as possible alike. That implies a similarity of molecular structure, which is a great deal more delicate than mere test of weight. You may weigh two fiddles until you are tired, and you will never find out whether they are in tune; the one test is a great deal more delicate than the other. Let us see how delicate this test is. Lord Rayleigh has remarked that there is a natural limit for the precise position of a given line in the spectrum, and for this reason. If a body which is emitting a sound comes toward you, you will find that the pitch of the sound is altered. Suppose that omnibuses run every ten minutes in the streets, and you walk in a direction opposite to that in which they are coming, you will obviously pass more omnibuses in an hour than if you walked in an opposite direction. If a body emitting light is coming toward you, you will find more waves in a certain direction than if it was going from you; consequently, if you are approaching a body emitting light, the light will come quicker, the vibration will be of shorter duration, and the light will be higher up in the spectrum—it will be more blue. If you are going away from the body, then the rate is slower, the light is lower down on the spectrum. By means of variations in the positions of certain known lines of that character, the actual rate of approach of certain fixed stars to the earth has been measured, and the rate of going away of certain other fixed stars has also been measured. Suppose we have a gas which is glowing in a state of incandescence, all the molecules are giving out light at a certain specified rate of vibration; but some of these are coming toward us at a rate much greater than seventeen miles a minute, because the temperature is higher when the gas is glowing, and others are also going away at a much higher rate than that. The consequence is, that instead of having one sharply-defined line on the spectrum, instead of having light of exactly one bright color, we have light which varies between certain limits.

If the actual rate of the vibration of the molecules of the gas were marked down upon the spectrum, we should not get that single bright line there, but we should get a bright band overlapping it on every side. Lord Rayleigh calculated that, in the most favorable circumstances, the breadth of this band would not be less than one-hundredth of the distance between the sodium-lines. It is precisely upon that experiment that the evidence of the exact similarity of molecules rests. We see, therefore, from the nature of the experiment, that we should get exactly the same results if the rate of vibration of all the molecules was not exactly equal, but varied within certain very small limits. If, for example, the rates of vibration varied in the same way as the heads of different men, then we should get very much what we get now from the experiment. From these two sources of evidence, then, the evidence of their being of the same weight and degree of