Page:Popular Science Monthly Volume 85.djvu/469

From Wikisource
Jump to navigation Jump to search
This page has been proofread, but needs to be validated.
THE ULTRA-SCIENTIFIC SCHOOL
465

As growth and multiplication are by far the most characteristic features of the living organism, it is little wonder that the fiercest antagonism centers around this point. Mitchell, one of the mildest critics, takes exception to the crystal comparison, on the ground that living matter is a mixture of substances chiefly dissolved in water, and that therefore it would be far more appropriate to take liquids as the basis for comparison.[1]

Armstrong and Haldane, the one a chemist and the other a physiologist, and both among the most eminent in their respective professions, flatly refute the analogy. In crystal growth there is a mere piling up of simple units, and, under the proper conditions, there is no limit to the growth of the crystal. Nothing corresponding to cell division, nor to the complexity of organic growth, is ever met with. Bergson, whose knowledge of the exact sciences makes him an exceedingly competent critic, argues that whereas the living organism is composed of unlike parts and performs diverse functions, the crystal neither consists of the one nor performs the other.[2]

Of course, Bergson repudiates Schäfer's whole hypothesis, but in this he is in agreement with many a scientific authority. For example, Professor Wilson, whose book on cell development is a classic, sums up his views in these words:

The study of the cell has, on the whole, seemed to widen rather than to narrow the enormous gap that separates even the lowest forms of life from the inorganic world.[3]

Sir William Tilden, the English chemist, is equally emphatic from the chemical standpoint. He writes:

Far be it from any man of science to affirm that any given set of phenomena is not a fit subject of inquiry, and that there is any limit to what may be revealed in answer to systematic and well-directed investigation. In the present instance, however, it appears to me that this [the origin of living matter] is not a field for the chemist, nor one in which chemistry is likely to afford any assistance whatsoever.[4]

Let it at once be stated clearly and emphatically that the ultrascientific view is based primarily upon analogy—a very valuable method provided it is not carried to excess, and provided, also, sufficient experimental data are at hand. Mendeleèff's periodic classification tended to show that cæsium, rubidium, sodium and potassium were closely allied,

might have produced millions of times organisms that survived but a few hours, but in which, also, by a favorable conjunction of those forces, what we now call life might have come into existence." No less fanciful is Armstrong himself (see H. E. Armstrong, "The Origin of Life: A Chemists' Fantasy," Smithsonian Report, Publication 2214). And yet we speak of the dry-as-dust scientist!

  1. P. C. Mitchell, "Encyclop. Brit.," 11th ed., article on "Life."
  2. Bergson, "Creative Evolution," p. 12.
  3. E. B. Wilson, "The Cell in Development and Inheritance," p. 330 (1907).
  4. Tilden, London Times, September 10, 1912.