Page:Relativity (1931).djvu/153

From Wikisource
Jump to navigation Jump to search
This page has been proofread, but needs to be validated.
UNIVERSE—FINITE YET UNBOUNDED
133

of , increases from zero up to a maximum value which is determined by the “world-radius,” but for still further increasing values of , the area gradually diminishes to zero. At first, the straight lines which radiate from the starting point diverge farther and farther from one another, but later they approach each other, and finally they run together again at a “counter-point” to the starting point. Under such conditions they have traversed the whole spherical space. It is easily seen that the three-dimensional spherical space is quite analogous to the two-dimensional spherical surface. It is finite (i.e. of finite volume), and has no bounds.

It may be mentioned that there is yet another kind of curved space: ‘‘elliptical space.” It can be regarded as a curved space in which the two ‘“counter-points” are identical (indistinguishable from each other). An elliptical universe can thus be considered to some extent as a curved universe possessing central symmetry.

It follows from what has been said, that closed spaces without limits are conceivable. From amongst these, the spherical space (and the elliptical) excels in its simplicity, since all points on it are equivalent. As a result of this discussion, a most interesting question arises for astronomers and physicists, and that is whether the universe in which we live is infinite, or whether it is finite