Page:ScienceAndHypothesis1905.djvu/80

From Wikisource
Jump to navigation Jump to search
This page has been validated.

These geometries of Riemann, so interesting on various grounds, can never be, therefore, purely analytical, and would not lend themselves to proofs analogous to those of Euclid.

On the Nature of Axioms.—Most mathematicians regard Lobatschewsky's geometry as a mere logical curiosity. Some of them have, however, gone further. If several geometries are possible, they say, is it certain that our geometry is the one that is true? Experiment no doubt teaches us that the sum of the angles of a triangle is equal to two right angles, but this is because the triangles we deal with are too small. According to Lobatschewsky, the difference is proportional to the area of the triangle, and will not this become sensible when we operate on much larger triangles, and when our measurements become more accurate? Euclid's geometry would thus be a provisory geometry. Now, to discuss this view we must first of all ask ourselves, what is the nature of geometrical axioms? Are they synthetic à priori intuitions, as Kant affirmed? They would then be imposed upon us with such a force that we could not conceive of the contrary proposition, nor could we build upon it a theoretical edifice. There would be no non-Euclidean geometry. To convince ourselves of this, let us take a true synthetic à priori intuition—the following, for instance, which played an important part in the first chapter:—If a theorem is true for the number 1, and if it has been proved that it is true of n + 1, provided it is