Page:Sm all cc.pdf/33

From Wikisource
Jump to navigation Jump to search
This page has been proofread, but needs to be validated.
30

misled by using what are called ‘parametric statistics’, i.e., statistics that assume a Gaussian distribution of errors. This section is organized in the same sequence that most data analyses should follow:

  1. test the data for normality;
  2. if non-normal, can one transform the data to make them normal?
  3. if non-normal, should anomalous points be omitted?
  4. if still non-normal, use non-parametric statistics.

Normality Tests

Because our statistical conclusions are often somewhat dependent on the assumption of a normal distribution, we would like to undertake a test that permits us to say “I am 95% confident that this distribution is normal.” But such a statement is no more possible than saying that we are 95% certain that a hypothesis is correct; disproof is more feasible and customary than proof. Thus our normality tests may allow us to say that “there is <5% chance that this distribution is normal” or, in statistical jargon, “We reject the null hypothesis of a normal distribution at the 95% confidence level.”

Experienced scientists usually test data for normality subjectively, simply by looking at a histogram and deciding that the data look approximately normally distributed. Yet I, an experienced scientist, would not have correctly interpreted the center histogram of Figure 2 as from a normal distribution. If in doubt, one can apply statistical tests of normality such as Chi-square (χ2) and examine the type of departure from normality with measures such as skewness. Too often, however, even the initial subjective examination is skipped.

We can use a χ2 test to determine whether or not our data distribution departs substantially from normality. A detailed discussion of the many applications of χ2 tests is beyond the scope of this book, but almost all statistics books explain how a χ2 test can be used to compare any data distribution to any theoretical distribution. A χ2 test is most easily understood as a comparison of a data histogram with the theoretical Gaussian distribution. The theoretical distribution predicts how many of our measurements are expected to fall into each histogram bin. Of course, this expected frequency [Nf(n)] for the nth bin (or interval) will differ somewhat from the actual data frequency [F(n)], or number of values observed in that interval. Indeed, we saw in Figure 2 that two groups of 50 normally distributed measurements exhibited surprisingly large differences both from each other and from the Gaussian distribution curve. The key question then is how much of a difference between observed frequency and predicted frequency is chance likely to produce. The variable χ2, which is a measure of the goodness of fit between data and theory, is the sum of squares of the fractional differences between expected and observed frequencies in all of the histogram bins:

(3)

Comparison of the value of χ2 to a table of predicted values allows one to determine whether statistically significant non-normality has been detected. The table tells us the range of χ2 values that are typically found for normal distributions. We do not expect values very close to zero, indi--