Page:The Elements of Euclid for the Use of Schools and Colleges - 1872.djvu/285

From Wikisource
Jump to navigation Jump to search
This page has been proofread, but needs to be validated.
EUCLID'S ELEMENTS.
261

of the first Book of the Elements. The principal results are those contained in Propositions 4, 8, and 26; in each of these Propositions it is shewn that two triangles which agree in three respects agree entirely. There are two other cases which wdll naturally occur to a student to consider besides those in Euclid; namely, (1) when two triangles have the three angles of the one respectively equal to the three angles of the other, (2) when two triangles have two sides of the one equal to two sides of the other, each to each, and an angle opposite to one side of one triangle equal to the angle opposite to the equal side of the other triangle. In the first of these two cases the student will easily see, after reading I. 29, that the two triangles are not necessarily equal. In the second case also the triangles are not necessarily equal, as may be shewn by an example; in the figure of I. 11, suppose the straight line FB drawn; then in the two triangles FBE, FBD, the side FB and the angle FBC are common, and the side FE is equal to the side FD, but the triangles are not equal in all respects. In certain cases, however, the triangles will be equal in all respects, as will be seen from a proposition which we shall now demonstrate.

If two triangles have two sides of the one equal to two sides of the other, each to each, and the angles opposite to a pair of equal sides equal; then if the angles opposite to the other pair of equal sides be both acute, or both obtuse, or if one of them be a right angle, the two triangles are equal in all respects.

Let ABC and DEF be two triangles; let AB be equal to DE, and BC equal to EF, and the angle A equal to the angle D.

First, suppose the angles C and F acute angles.

If the angle B be equal to the angle E, the triangles ABC, DEF are equal in all respects, by I. 4. If the angle B be not equal to the angle E, one of them must be greater than the other; suppose the angle B greater than the angle E, and make the angle ABG equal to the angle E. Then the triangles ABG, DEF are equal in all respects, by I. 26; therefore BG is equal to EF, and the angle BGA is equal to the angle EFD. But the angle EFD is acute, by hypothesis; therefore the angle BGA is acute. Therefore the angle BGC is obtuse, by I. 13. But it has