Page:Treatise on poisons in relation to medical jurisprudence, physiology, and the practice of physic (IA treatiseonpoison00chriuoft).pdf/164

From Wikisource
Jump to navigation Jump to search
This page needs to be proofread.

distension of the intestines with gases, enlargement of the other viscera and serous effusion into the peritonæum; adhesion of the viscera to one another; redness of the intestines, in some places approaching to gangrenous discoloration; redness and excoriation of the peritonæal coat of the stomach, and also of its villous coat; enlargement and pale rose-red coloration of the liver. In the chest serum was found in the sac of the pleura. The gullet was contracted in diameter, and red internally.


On Poisoning with Iodide of Potassium.

To these remarks on iodine a few observations may be added on the iodide of potassium, one of its compounds, which is now generally substituted in medicine for the simple substance. The tests and actions of this poison have been examined by M. Devergie; and more lately its medico-legal chemistry has been investigated by Dr. O'Shaughnessey and Professor Orfila.

It is sold in the shops of various degrees of purity. Pure iodide of potassium is in white crystals, tending to the cubical form, permanent in the air, possessing a faint peculiar odour, and easily soluble in both water and rectified spirit. Another variety has the same form, but possesses an odour of iodine, is often yellowish in colour, and deliquesces slightly in moist air. This contains an excess of iodine, but may be otherwise pure. A third variety is impure. It presents less tendency to assume a crystalline form, is more or less deliquescent, dissolves but partially in alcohol, and when dissolved effervesces with acids. The principal ingredient in this article is carbonate of potass; and sometimes the proportion of iodide is inconsiderable. In one specimen I procured 74·5 per cent. of carbonate of potass, 16 of water, and only 9·5 of iodide of potassium.

In the solid state the iodide of potassium may be known by the effect of strong sulphuric or nitric acid, which turns it brown with effervescence, and when aided by heat disengages violet fumes of iodine.

In solution many tests will detect it, such as chlorine, nitric acid, corrosive sublimate, acetate of lead, protonitrate of mercury, muriate of platinum, and starch with chlorine or nitric acid. Chlorine or nitric acid forms a brown or orange-coloured solution by disengaging iodine. Corrosive sublimate forms a fine carmine-red precipitate, the biniodide of mercury; acetate of lead a fine yellow precipitate, the iodide of lead; protonitrate of mercury a yellow protiodide of mercury, which gradually fades into a dirty-brown. Solution of starch, followed by chlorine in solution or in vapour, strikes a deep blue colour, which, if the fluid is sufficiently diluted, disappears on boiling, reappears on sudden cooling, and is permanently removed by a stream of sulphuretted hydrogen gases. Of these tests the most characteristic is starch with chlorine; and it is also extremely delicate. Too much chlorine however bleaches the blue colour away.