Page:Treatise on poisons in relation to medical jurisprudence, physiology, and the practice of physic (IA treatiseonpoison00chriuoft).pdf/307

From Wikisource
Jump to navigation Jump to search
This page needs to be proofread.

detected a tenth part of a grain in four ounces of the last mixture, that is in 19,200 times its weight.

It may be applied successfully and without difficulty to a very large majority of medico-legal cases. The only difficulty in the way of applying it to all organic mixtures whatever arises from the occasional presence of some vegetable matters, such as seeds, leaves, ligneous fibre and the like, which are insoluble in caustic potass, and which may therefore be left behind with the mercurial precipitate, and obstruct the subsequent sublimation of the metal. This difficulty may be sometimes got rid of, as recommended above, by picking such matters out of the mixture before the protochloride of tin is added. No mercury is lost by so doing, for none of it is united with these vegetable matters: corrosive sublimate does not form any chemical compound with them as it does with other vegetable matters soluble in caustic potass, and with the soft animal solids. When the particles are too small to admit of being thus removed, or cannot be afterwards removed during the process of washing the black powder, which is left after the action of potass—the analyst must be content with the increased facility of sublimation derived from the abstraction of other vegetable and animal admixtures, and take care to use a tube of greater length and with a larger ball than usual. If the sublimate is too much obscured by empyreumatized matter to exhibit distinctly its metallic, globular appearance, the portion of the tube is to be broken off, and scraped, washed, and boiled with a little rectified spirit in a tube. If the globules do not then become visible, a second sublimation will render them distinct. This supplemental operation, however, will be very seldom required; and the process given above will be found to apply to a great majority of instances.

Various objections brought against this process by reviewers and others were noticed in previous editions of this work. The result of the investigation is, that, though not by any means a perfect process, it is one of the most convenient and certain, and least fallacious of all yet proposed. The first step for separating corrosive sublimate by ether in the undecomposed state,—which is borrowed from a suggestion of Professor Orfila, will seldom succeed; for the poison is seldom present in sufficient quantity.

It must be observed that this as well as every other method yet proposed for discovering corrosive sublimate in compound mixtures merely indicates the presence of mercury, and does not point out its state of combination. More especially, in the case of the contents of the stomach, if mercury be not obtained from the filtered fluid, it is impossible to know whether what is detected in the solid matter only may not have proceeded from calomel given medicinally. This objection can be obviated solely by sufficient evidence that calomel was not administered; at least the different criterions laid down by Professor Orfila for distinguishing calomel in the alimentary canal from the products of the decomposition of corrosive sublimate do not appear sufficiently precise, or commonly applicable.[1]

  1. Toxicologie Générale, i. 301.