Page:Treatise on poisons in relation to medical jurisprudence, physiology, and the practice of physic (IA treatiseonpoison00chriuoft).pdf/398

From Wikisource
Jump to navigation Jump to search
This page needs to be proofread.

There are many soluble salts of iron which in all probability may prove hurtful; but the only ones which have been brought under notice in medico-legal researches are the sulphate of the protoxide, and the mixed chlorides.

The sulphate of the protoxide of iron, commonly called green-vitriol or copperas, occurs in commerce in crystals or crystalline masses of various shades of bluish-green. It is easily known by its colour and its strong styptic inky taste. When in solution, the iron may be detected by ferrocyanate of potash, sulphuretted-hydrogen, and tincture of galls. Ferrocyanate of potash causes a blue precipitate, at first pale, but gradually passing to deep Prussian blue. Sulphuretted-hydrogen has no effect, but if an alkali, such as ammonia, be added to disengage the oxide of iron, a black precipitate of sulphuret of iron is immediately produced. Tincture of galls occasions a deep purplish-black precipitate, the tannate of iron, and it acts with greater delicacy in very diluted solutions, if the oxide of iron be disengaged by carbonate of soda. These tests prove the presence of iron in solution. A white precipitate under the action of nitrate of baryta will indicate that the oxide is dissolved by sulphuric acid.

The most familiar form of chloride of iron is the tincture of the chloride, which sometimes contains only the sesquichloride, sometimes consists of a mixture of this with the protochloride. It is known by the three tests for oxide of iron described above, and by nitrate of silver occasioning a heavy white precipitate, insoluble in nitric acid.

For detecting iron in organic mixtures, where the liquid reagents do not act satisfactorily, the simplest process is to digest the mixture, if there be any solid matter, in water acidulated with acetic acid, to evaporate the filtered liquid to dryness, to incinerate the extract in a porcelain crucible, to act on the product with diluted sulphuric acid, and then to treat the solution with the three liquid reagents.

Professor Gmelin found that sulphate of iron merely caused vomiting in dogs who were made to swallow two drachms of it, that rabbits might take forty grains without any apparent injury, and that twenty grains in a state of solution might even be injected into the veins of a dog without producing any particular symptom.[1] From these and some other facts of the like kind it was generally held, that sulphate of iron is not a poison. But Smith ascertained that a dose of two drachms will prove fatal to dogs in little more than twenty-tour hours, when it is introduced into the stomach, and in half that time if applied to a wound; and that it occasions some redness of the alimentary mucous membrane, and the effusion of a thick layer of tough mucus. It is remarkable, however, that, like Gmelin, he found no effect to flow from the transfusion of a solution of seven grains into the veins, except transient vomiting and expressions of pain.[2]

The effects which have been observed in the human subject are conformable with those witnessed in experiments on the lower ani-*

  1. Versuche über die Wirkung des Baryts, &c.
  2. Toxicologie Gén. 1843, ii. 44.