Page:VaricakRel1912.djvu/25

From Wikisource
Jump to navigation Jump to search
This page has been proofread, but needs to be validated.

Therefore we can obtain the laws for the reflection of light upon a moving mirror, by replacing u by 2u in formulas (34). However, as the image is located at the object's opposite side of the plane , we have to take instead of , i.e., we have to subject the light vector to the transformation

(70)

Now, it follows from (1)

and the preceding equations go over to

(71)

H. Bateman[1] has derived the laws of reflection on a moving mirror on the basis of the presupposition: the image of an object is caused by that space-time transformation (71).

The reflection angle at the moving mirror can be defined in the same way as at a stationary mirror, by means of construction according to the principle of Huyghens. I only mention the related statements by W. M. Hicks[2] and E. Kohl[3], performed by them with respect to the Michelson-Morley experiment. From our figure 14 we see, that or , when we denote by the perpendicular corresponding to angle ψ. From this it follows , or

(72)

This is the formula of Hicks. However, he assumes v to be positive when the ray moves towards the incident rays. In his formula (1) we have to take v as negative, to bring them into accordance to our definition.[4] In the same way we have to alter his figure.

  1. H. Bateman, The reflexion of light at an ideal plane mirror moving with a uniform velocity of translation. Phil. Mag. 18, 892, 1909
  2. Phil. Mag. 3, 1902, 15
  3. Ann. d. Phys. 28, 1909, 262
  4. See also Laue, Das Relativitätsprinzip, 93