Page:Zur Theorie der Strahlung bewegter Koerper.djvu/4

From Wikisource
Jump to navigation Jump to search
This page has been proofread, but needs to be validated.

This expression now gives us also the amount of the radiation falling upon in the unit of time. There, one fraction of it is absorbed, and one fraction is transformed into work. If would be at the absolute temperature zero, then the radiation just considered would be the only one present in . Since in this case, no force of resistance against the motion of our system is to be expected, then the same pressure into opposite directions must be effective in and , so that no work is performed in the whole. Thus in , the energy quantity

is absorbed, and the energy quantity

is transformed into mechanical work.

If we now imagine that has the same temperature as , then also emanates energy

in a certain direction. If this radiation exerts the pressure , then it performs work by which amount the energy provided by has to be diminished, so that also is left by the radiation quantity

The same energy quantity also occurs in , and a quite similar consideration as earlier teaches, that the energy quantity

is absorbed there, because the work must also be performed against the incident radiation from outside, which is also transformed into work.