The Gradual Acceptance of the Copernican Theory of the Universe/Part 2/Chapter 1

From Wikisource
Jump to navigation Jump to search

PART TWO

THE RECEPTION OF THE COPERNICAN THEORY.

CHAPTER I.

OPINIONS AND ARGUMENTS IN THE SIXTEENTH CENTURY.

DURING the life-time of Copernicus, Roman Catholic churchmen had been interested in his work: Cardinal Schönberg wrote for full information, Widmanstadt reported on it to Pope Clement VII and Copernicus had dedicated his book to Pope Paul III.[1] But after his death, the Church authorities apparently paid little heed to his theory until some fifty years later when Giordano Bruno forced it upon their attention in his philosophical teachings. Osiander's preface had probably blinded their eyes to its implications.

The Protestant leaders were not quite so urbane in their attitude. While Copernicus was still alive, Luther is reported[2] to have referred to this "new astrologer" who sought to prove that the earth and not the firmament swung around, saying: "The fool will overturn the whole science of astronomy. But as the Holy Scriptures state, Joshua bade the sun stand still and not the earth." Melancthon was more interested in this new idea, perhaps because of the influence of Rheticus, his colleague in the University of Wittenberg and Copernicus's great friend and supporter; but he too preferred not to dissent from the accepted opinion of the ages.[3] Informally in a letter to a friend he implies the absurdity of the new teaching,[4] and in his Initia Doctrinæ Physicæ he goes to some pains to disprove the new assumption not merely by mathematics but by the Bible, though with a kind of apology to other physicists for quoting the Divine Witness.[5] He refers to the phrase in Psalm XIX likening the sun in its course "to a strong man about to run a race," proving that the sun moves. Another Psalm states that the earth was founded not to be moved for eternity, and a similar phrase occurs in the first chapter of Ecclesiastes. Then there was the miracle when Joshua bade the sun stand still. While this is a sufficient witness to the truth, there are other proofs: First, in the turning of a circumference, the center remains motionless. Next, changes in the length of the day and of the seasons would ensue, were the position of the earth in the universe not central, and it would not be equidistant from the two poles. (He has previously disposed of infinity by stating that the heavens revolve around the pole, which could not happen if a line drawn from the center of the universe were infinitely projected ).[6] Furthermore, the earth must be at the center for its shadow to fall upon the moon in an eclipse. He refers next to the Aristotelian statement that to a simple body belongs one motion: the earth is a simple body; therefore it can have but one motion. What is true of the parts applies to the whole; all the parts of the earth are borne toward the earth and there rest; therefore the whole earth is at rest. Quiet is essential to growth. Lastly, if the earth moved as fast as it must if it moves at all, everything would fly to pieces.[7]

Melancthon thus sums up the usual arguments from the Scriptures, from Aristotle, Ptolemy and the then current physics, in opposition to this theory. Not only did he publish his own text-book on physics, but he republished Sacrobosco's famous introduction to astronomy, writing for it a preface urging diligent study of this little text endorsed by so many generations of scholars.

Calvin, the great teacher of the Protestant Revolt, apparently was little touched by this new intellectual current.[8] He did write a semi-popular tract[9] against the so called "judicial" astrology, then widely accepted, which he, like Luther, condemns as a foolish superstition, though he values "la vraie science d'astrologie" from which men understand not merely the order and place of the stars and planets, but the causes of things. In his Commentaries, he accepts the miracle of the sun's standing still at Joshua's command as proof of the faith Christ commended, so strong that it will remove mountains; and he makes reference only to the time-honored Ptolemaic theory in his discussion of Psalm XIX.[10]

For the absolute authority of the Pope the Protestant leaders substituted the absolute authority of the Bible. It is not strange, then, that they ignored or derided a theory as yet unsupported by proof and so difficult to harmonize with a literally accepted Bible.

How widespread among the people generally did this theory become in the years immediately following the publication of the De Revolutionibus? M. Flammarion, in his Vie de Copernic (1872), refers[11] to the famous clock in the Strasburg Cathedral as having been constructed by the University of Strasburg in protest against the action taken by the Holy Office against Galileo, (though the clock was constructed in 1571 and Galileo was not condemned until 1633). This astronomical clock constructed only thirty years after the death of Copernicus, he claims represented the Copernican system of the universe with the planets revolving around the sun, and explained clearly in the sight of the people what was the thought of the makers. Lest no one should miscomprehend, he adds, the portrait of Copernicus was placed there with this inscription: Nicolai Copernici vera effigies, ex ipsius autographo depicta.

This would be important evidence of the spread of the theory were it true. But M. Flammarion must have failed to see a brief description of the Strasburg Clock written in 1856 by Charles Schwilguè, son of the man who renovated its mechanism in 1838-1842. He describes the clock as it was before his father made it over and as it is today. Originally constructed in 1352, it was replaced in 1571 by an astrolabe based on the Ptolemaic system; six hands with the zodiacal signs of the planets gave their daily movements and, together with a seventh representing the sun, revolved around a map of the world.[12] When M. Schwilguè repaired the clock in 1838, he changed it to harmonize with the Copernican system.[13]

But within eighteen years after the publication of the De Revolutionibus, proof of its influence is to be found in such widely separated places as London and the great Spanish University of Salamanca. In 1551, Robert Recorde, court physician to Edward and to Mary and teacher of mathematics, published in London his Castle of Knowledge, an introduction to astronomy and the first book printed in England describing the Copernican system.[14] He evidently did not consider the times quite ripe for a full avowal of his own allegiance to the new doctrine, but the remarks of the Maister and the Scholler are worth repeating:[15]

"Maister: … howbeit Copernicus a man of great learning, of much experience, and of wonder full diligence in observation, hath renewed the opinion of Aristarchus Samius, affirming that the earth, not onely moveth circularly about his owne centre, but also may be, yea and is, continually out of the precise centre of the world eight and thirty hundred thousand miles: but because the understanding of that controversie depends of profounder knowledge than in this Introduction may be uttered conveniently, I wil let it passe til some other time.

"Scholler: Nay sit, in good faith, I desire not to heare such vaine fantasies, so farre against the common reason, and repugnant to the content of all the learned multitude of Writers, and therefore let it passe for ever and a day longer.

"Maister: You are too yong to be a good judge in so great a matter: it passeth farre your learning, and their's also, that are much better learned than you, to improuve his supposition by good arguments, and therefore you were best condemne nothing that you do not well understand: but an other time, as I saide, I will so declare his supposition, that you shall not onely wonder to heare it, but also peradventure be as earnest then to credite it, as you are now to condemne it: in the meane season let us proceed forward in our former order … "

This little book, reprinted in 1556 and in 1596, and one of the most popular of the mathematical writings in England during that century, must have interested the English in the new doctrine even before Bruno's emphatic presentation of it to them in the eighties.

Yet the English did not welcome it cordially. One of the most popular books of this period was Sylvester's translation (1591) of DuBartas's The Divine Weeks which appeared in France in 1578, a book loved especially by Milton.[16] DuBartas writes:[17]

"Those clerks that think—think how absurd a jest!

That neither heavens nor stars do turn at all,
Nor dance around this great, round earthly ball,
But the earth itself, this massy globe of our's,
Turns round about once every twice twelve hours!
And we resemble land-bred novices
New brought aboard to venture on the seas;
Who at first launching from the shore suppose
The ship stands still and that the firm earth goes."

Quite otherwise was the situation in the sixteenth century at the University of Salamanca. A new set of regulations for the University, drawn up at the King's order by Bishop Covarrubias, was published in 1561. It contained the provision in the curriculum that "Mathematics and Astrology are to be given in three years, the first, Astrology, the second, Euclid, Ptolemy or Copernicus ad vota audientium," which also indicates, as Vicente de la Fuente points out, that at this University "the choice of the subject-matter to be taught lay not with the teachers but with the students, a rare situation."[18] One wonders what happened there when the professors and students received word[19] from the Cardinal Nuncio at Madrid in 1633 that the Congregations of the Index had decreed the Copernican doctrine was thereafter in no way to be held, taught or defended.

One of the graduates of this University, Father Zuñiga,[20] (better known as Didacus à Stunica), wrote a commentary on Job that was licensed to be printed in 1579, but was not published until 1584 at Toledo. Another edition appeared at Rome seven years later. It evidently was widely read for it was condemned donec corrigatur by the Index in 1616 and the mathematical literature of the next half century contains many allusions to his remarks on Job: IX: 6; "Who shaketh the earth out of her place, and the pillars thereof tremble." After commenting here upon the greater clarity and simplicity of the Copernican theory, Didacus à Stunica then states that the theory is not contradicted by Solomon in Ecclesiastes, as that "text signifieth no more but this, that although the succession of ages, and generations of men on earth be various, yet the earth itself is still one and the same, and continueth without any sensible variation" … and "it hath no coherence with its context (as Philosophers show) if it be expounded to speak of the earth's immobility. The motion that belongs to the earth by way of speech is assigned to the sun even by Copernicus himself, and those who are his followers …To conclude, no place can be produced out of Holy Scriptures which so clearly speaks the earth's immobility as this doth its mobility. Therefore this text of which we have spoken is easily reconciled to this opinion. And to set forth the wonderful power and wisdom of God who can indue the frame of the whole earth (it being of monstrous weight by nature) with motion, this our Divine pen-man added; 'And the pillars thereof tremble:' As if he would teach us, from the doctrine laid down, that it is moved from its foundations."[21]

French thinkers, like the English, did not encourage the new doctrine at this time. Montaigne[22] was characteristically indifferent: "What shall we reape by it, but only that we neede not care which of the two it be? And who knoweth whether a hundred yeares hence a third opinion will arise which happily shall overthrow these two præcedent?" The famous political theorist, Jean Bodin, (1530-1596), was as thoroughly opposed to it as DuBartas had been. In the last year of his life, Bodin wrote his Universæ Naturæ Theatrum[23] in which he discussed the origin and composition of the universe and of the animal, vegetable, mineral and spiritual kingdoms. These five books (or divisions) reveal his amazing ideas of geology, physics and astronomy while at the same time they show a mind thoroughly at home in Hebrew and Arabian literature as well as in the classics. His answer to the Copernican doctrine is worth quoting to illustrate the attitude of one of the keenest thinkers in a brilliant era:

"Theorist: Since the sun's heat is so intense that we read it has sometimes burned crops, houses and cities in Scythia,[24] would it not be more reasonable that the sun is still and the earth indeed revolves?

"Mystic: Such was the old idea of Philolaus, Timaeus, Ecphantes, Seleucus, Aristarchus of Samos, Archimedes and Eudoxus, which Copernicus has renewed in our time. But it can easily be refuted by its shallowness although no one has done it thoroughly.

"The.: What arguments do they rely on who hold that the earth is revolved and that the sun forsooth is still?

"Mys.: Because the comprehension of the human mind cannot grasp the incredible speed of the heavenly spheres and especially of the tenth sphere which must be ten times greater than that of the eighth, for in twenty-four hours it must traverse 469,562,845 miles, so that the earth seems like a dot in the universe. This is the chief argument. Besides this, we get rid entirely of epicycles in representing the motions of the planets, and what is taught concerning the motion of trepidation in the eighth sphere vanishes. Also, there is no need for the ninth and tenth spheres. There is one argument which they have omitted but which seems to me more efficacious than any, viz.: rest is nobler than movement, and that celestial and divine things have a stable nature while elemental things have motion, disturbance and unrest; therefore it seems more probable that the latter move rather than the former. But while serious absurdities result from the idea of Eudoxus, far more serious ones result from that of Copernicus.

"The.: What are these absurdities?

"Mys.: Eudoxus knew nothing of trepidation, so his idea seems to be less in error. But Copernicus, in order to uphold his own hypothesis, claims the earth has three motions, its diurnal and annual ones, and trepidation; if we add to these the pull of weight towards the center, we are attributing four natural motions to one and the same body. If this is granted, then the very foundations of physics must fall into ruins; for all are agreed upon this, that each natural body has but one motion of its own, and that all others are said to be either violent or voluntary. Therefore, since he claims the earth is agitated by four motions, one only can be its own, the others must be confessedly violent; yet nothing violent in nature can endure continuously. Furthermore the earth is not moved by water, much less by the motion of air or fire in the way we have stated the heavens are moved by the revolutions of the enveloping heavens. Copernicus further does not claim that all the heavens are immobile but that some are moved, that is, the moon, Mercury. Venus, Mars, Jupiter and Saturn. But why such diversity? No one in his senses, or imbued with the slightest knowledge of physics, will ever think that the earth, heavy and unwieldy from its own weight and mass, staggers up and down around its own center and that of the sun; for at the slightest jar of the earth, we would see cities and fortresses, towns and mountains thrown down. A certain courtier Aulicus, when some astrologer in court was upholding Copernicus's idea before Duke Albert of Prussia, turning to the servant who was pouring the Falernian, said: "Take care that the flagon is not spilled."[* 1] For if the earth were to be moved, neither an arrow shot straight up, nor a stone dropped from the top of a tower would fall perpendicularly, but either ahead or behind. With this argument Ptolemy refuted Eudoxus. But if we search into the secrets of the Hebrews and penetrate their sacred sanctuaries, all these arguments can easily be confirmed; for when the Lord of Wisdom said the sun swept in its swift course from the eastern shore to the west, he added this: Terra vero stat æternam. Lastly, all things on finding places suitable to their natures, remain there, as Aristotle writes. Since therefore the earth has been alloted a place fitting its nature, it cannot be whirled around by other motion than its own.

"The.: I certainly agree to all the rest with you, but Aristotle's law I think involves a paralogism, for by this argument the heavens should be immobile since they are in a place fitting their nature.

"Mys.: You argue subtly indeed, but in truth this argument does not seem necessary to me; for what Aristotle admitted, that, while forsooth all the parts of the firmament changed their places, the firmament as a whole did not, is exceedingly absurd. For either the whole heaven is at rest or the whole heaven is moved. The senses themselves disprove that it is at rest; therefore it is moved. For it does not follow that if a body is not moved away from its place, it is not moved in that place. Furthermore, since we have the most certain proof of the movement of trepidation, not only all the parts of the firmament, but also the eight spheres, must necessarily leave their places and move up and down, forward and back."[26]

This was the opinion of a profound thinker and experienced man of affairs living when Tycho Brahe and Bruno were still alive and Kepler and Galileo were beginning their astronomical investigations. But he was not alone in his views, as we shall see; for at the close of the sixteenth century, the Copernican doctrine had few avowed supporters. The Roman Church was still indifferent; the Protestants clinging to the literal interpretation of the Bible were openly antagonistic; the professors as a whole were too Aristotelian to accept or pay much attention to this novelty, except Kepler and his teacher Mæstlin (though the latter refused to uphold it in his text-book);[27] while astronomers and mathematicians who realized the insuperable objections to the Ptolemaic conception, welcomed the Tychonic system as a via media; and the common folk, if they heard of it at all, must have ridiculed it because it was so plainly opposed to what they saw in the heavens every day. In the same way their intellectual superiors exclaimed at the "delirium" of of those supporting such a notion.[28] One thinker, however was to see far more in the doctrine than Copernicus himself had conceived, and by Giordano Bruno the Roman Church was to be aroused.

  1. See before, p. 30.
  2. Luther: Tischreden; IV, 575; "Der Narr will die ganze Kunst Astronomiae umkehren. Aber wie die heilige Schrift anzeigt, so heiss Josua die Sonne still stehen, und nicht das Erdreich."
  3. "Non est autem hominis bene instituti dissentire a consensu tot sæculorum." Præfatio Philippi Melanthonis, 1531, in Sacro-Busto: Libellus de Sphæra (no date).
  4. "Vidi dialogum et fui dissuassor editionis. Fabula per sese paulatim consilescet; sed quidam putant esse egregiam katorthoma rem tarn absurdam ornare, sicut ille Sarmaticus Astronomis qui movet terram et figet solem. Profecto sapientes gubernatores deberent ingeniorum petulantia cohercere." Epistola B. Mithobio, 16 Oct. 1541. P. Melancthon: Opera: IV, 679.
  5. "Quamquam autem rident aliqui Physicum testimonia divina citantem, tamen nos honestum esse censemus, Philosophiam conferre ad cœlestia dicta, et in tanta caligine humanæ mentis autoritatem divinam consulere ubicunque possumus." Melancthon: Initia Doctrinæ Physicæ: Bk. I, 63.
  6. Ibid: 60.
  7. Ibid: 59-67.
  8. Farrar: Hist. of Interpretation: Preface; xviii: "Who," asks Calvin, "will venture to place the authority of Copernicus above that of the Holy Spirit?"
  9. Calvin: Oeuvres François: Traité … contre l'Astrologie; 110-112.
  10. Calvin: Op. Om. in Corpus Reformatorum: vol. 25; 499-500; vol. 59; 195-196.
  11. P. 78-79: "Ce planétaire … represente le système du monde tel qu'il a été expliqué par Copernic."
  12. Schwilguè: p. 15.
  13. Ibid: p. 48.
  14. Dict. of Nat. Biog: "Recorde."
  15. Quoted (p. 135), from the edition of 1596 in the library of Mr. George A. Plimpton. See also Recorde's Whetstone of Witte (1557) as cited by Berry, 127.
  16. DuBartas: The Divine Weeks (Sylvester's trans, edited by Haight); Preface, pp. xx-xxiii and note.
  17. Op. cit.: 72.
  18. La Fuente; Historia de la Universidades … de España: II, 314.
  19. Doc. 86 in Favaro; 130.
  20. Diccionario Enciclopedico Hispano-Americano le literatura, ciencias y artes (Barcelona, 1898).
  21. Quoted in Salusbury: Math. Coll.: I; 468-470 (1661), as a work inaccessible to most readers at that time because of its extreme rarity. It remained on the Index until the edition of 1835.
  22. Montaigne: Essays: Bk: II, c. 2: An Apologie of Raymonde Sebonde (II, 352).
  23. This book, published at Frankfort in 1597, was translated into French by M. Fougerolles and printed in Lyons that same year. It has become extremely rare since its "atheistic atmosphere" (Peignot; Dictionnaire) caused the Roman Church to place it upon the Index by decree of 1628, where it has remained to this day.
  24. Cromer in History of Poland.
  25. Cromer in History of Poland.
  26. Bodin; Univ. Nat. Theatrum: Bk. V, sec. 2 (end).
  27. Delambre; Astr. Mod.: I, 663.
  28. Justus-Lipsius; Physiologiæ Stoicorum; Bk. II; dissert. 19; (Dedication 1604, Louvain), (IV, 947); "Vides deliria, quomodo aliter appellant?"
  1. I could not find this reference in either of Martin Kromer's books; De Origine et Rebus Gestis Polonorum, ad 1511, or in his Res Publicæ sive Status Regni Poloniæ.[25]