100%

Experimental researches in electricity/Force and direction of magneto-electricinduction generally

From Wikisource
Jump to navigation Jump to search
487841Experimental researches in electricity — Force and direction of magneto-electricinduction generallyMichael Faraday

§ 6. _General remarks and illustrations of the Force and Direction of Magneto-electric Induction._


193. In the repetition and variation of Arago's experiment by Messrs. Babbage, Herschel, and Harris, these philosophers directed their attention to the differences of force observed amongst the metals and other substances in their action on the magnet. These differences were very great[A], and led me to hope that by mechanical combinations of various metals important results might be obtained (183.). The following experiments were therefore made, with a view to obtain, if possible, any such difference of the action of two metals,

 [B] Philosophical Transactions, 1825, p. 472; 1831, p.78.

194. A piece of soft iron bonnet-wire covered with cotton was laid bare and cleaned at one extremity, and there fastened by metallic contact with the clean end of a copper wire. Both wires were then twisted together like the strands of a rope, for eighteen or twenty inches; and the remaining parts being made to diverge, their extremities were connected with the wires of the galvanometer. The iron wire was about two feet long, the continuation to the galvanometer being copper.

195. The twisted copper and iron (touching each other nowhere but at the extremity) were then passed between the poles of a powerful magnet arranged horse-shoe fashion (fig. 32.); but not the slightest effect was observed at the galvanometer, although the arrangement seemed fitted to show any electrical difference between the two metals relative to the action of the magnet,

196. A soft iron cylinder was then covered with paper at the middle part, and the twisted portion of the above compound wire coiled as a spiral around it, the connexion with the galvanometer still being made at the ends A and B. The iron cylinder was then brought in contact with the poles of a powerful magnet capable of raising thirty pounds; yet no signs of electricity appeared at the galvanometer. Every precaution was applied in making and breaking contact to accumulate effect, but no indications of a current could be obtained.

197. Copper and tin, copper and zinc, tin and zinc, tin and iron, and zinc and iron, were tried against each other in a similar manner (194), but not the slightest sign of electric currents could be procured.

198. Two flat spirals, one of copper and the other of iron, containing each eighteen inches of wire, were connected with each other and with the galvanometer, and then put face to face so as to be in contrary directions. When brought up to the magnetic pole (53.). No electrical indications at the galvanometer were observed. When one was turned round so that both were in the same direction, the effect at the galvanometer was very powerful.

199. The compound helix of copper and iron wire formerly described (8.) was arranged as a double helix, one of the helices being all iron and containing two hundred and fourteen feet, the other all copper and continuing two hundred and eight feet. The two similar ends AA of the copper and iron helix were connected together, and the other ends BB of each helix connected with the galvanometer; so that when a magnet was introduced into the centre of the arrangement, the induced currents in the iron and copper would tend to proceed in contrary directions. Yet when a magnet was inserted, or a soft iron bar within made a magnet by contact with poles, no effect at the needle was produced.

200. A glass tube about fourteen inches long was filled with strong sulphuric acid. Twelve inches of the end of a clean copper wire were bent up into a bundle and inserted into the tube, so as to make good superficial contact with the acid, and the rest of the wire passed along the outside of the tube and away to the galvanometer. A wire similarly bent up at the extremity was immersed in the other end of the sulphuric acid, and also connected with the galvanometer, so that the acid and copper wire were in the same parallel relation to each other in this experiment as iron and copper were in the first (194). When this arrangement was passed in a similar manner between the poles of the magnet, not the slightest effect at the galvanometer could be perceived.

201. From these experiments it would appear, that when metals of different kinds connected in one circuit are equally subject in every circumstance to magneto-electric induction, they exhibit exactly equal powers with respect to the currents which either are formed, or tend to form, in them. The same even appears to be the case with regard to fluids, and probably all other substances.

202. Still it seemed impossible that these results could indicate the relative inductive power of the magnet upon the different metals; for that the effect should be in some relation to the conducting power seemed a necessary consequence (139.), and the influence of rotating plates upon magnets had been found to bear a general relation to the conducting power of the substance used.

203. In the experiments of rotation (81.), the electric current is excited and discharged in the same substance, be it a good or bad conductor; but in the experiments just described the current excited in iron could not be transmitted but through the copper, and that excited in copper had to pass through iron: i.e. supposing currents of dissimilar strength to be formed in the metals proportionate to their conducting power, the stronger current had to pass through the worst conductor, and the weaker current through the best.

204. Experiments were therefore made in which different metals insulated from each other were passed between the poles of the magnet, their opposite ends being connected with the same end of the galvanometer wire, so that the currents formed and led away to the galvanometer should oppose each other; and when considerable lengths of different wires were used, feeble deflections were obtained.

205. To obtain perfectly satisfactory results a new galvanometer was constructed, consisting of two independent coils, each containing eighteen feet of silked copper wire. These coils were exactly alike in shape and number of turns, and were fixed side by side with a small interval between them, in which a double needle could be hung by a fibre of silk exactly as in the former instrument (87.). The coils may be distinguished by the letters KL, and when electrical currents were sent through them in the same direction, acted upon the needle with the sum of their powers; when in opposite directions, with the difference of their powers.

206. The compound helix (199. 8.) was now connected, the ends A and B of the iron with A and B ends of galvanometer coil K, and the ends A and B of the copper with B and A ends of galvanometer coil L, so that the currents excited in the two helices should pass in opposite directions through the coils K and L. On introducing a small cylinder magnet within the helices, the galvanometer needle was powerfully deflected. On disuniting the iron helix, the magnet caused with the copper helix alone still stronger deflection in the same direction. On reuniting the iron helix, and unconnecting the copper helix, the magnet caused a moderate deflection in the contrary direction. Thus it was evident that the electric current induced by a magnet in a copper wire was far more powerful than the current induced by the same magnet in an equal iron wire.

207. To prevent any error that might arise from the greater influence, from vicinity or other circumstances, of one coil on the needle beyond that of the other, the iron and copper terminations were changed relative to the galvanometer coils KL, so that the one which before carried the current from the copper now conveyed that from the iron, and vice versa. But the same striking superiority of the copper was manifested as before. This precaution was taken in the rest of the experiments with other metals to be described.

208. I then had wires of iron, zinc, copper, tin, and lead, drawn to the same diameter (very nearly one twentieth of an inch), and I compared exactly equal lengths, namely sixteen feet, of each in pairs in the following manner: The ends of the copper wire were connected with the ends A and B of galvanometer coil K, and the ends of the zinc wire with the terminations A and B of the galvanometer coil L. The middle part of each wire was then coiled six times round a cylinder of soft iron covered with paper, long enough to connect the poles of Daniell's horse-shoe magnet (56.) (fig. 33.), so that similar helices of copper and zinc, each of six turns, surrounded the bar at two places equidistant from each other and from the poles of the magnet; but these helices were purposely arranged so as to be in contrary directions, and therefore send contrary currents through the galvanometer coils K and L,

209. On making and breaking contact between the soft iron bar and the poles of the magnet, the galvanometer was strongly affected; on detaching the zinc it was still more strongly affected in the same direction. On taking all the precautions before alluded to (207.), with others, it was abundantly proved that the current induced by the magnet in copper was far more powerful than in zinc.

210. The copper was then compared in a similar manner with tin, lead, and iron, and surpassed them all, even more than it did zinc. The zinc was then compared experimentally with the tin, lead, and iron, and found to produce a more powerful current than any of them. Iron in the same manner proved superior to tin and lead. Tin came next, and lead the last.

211. Thus the order of these metals is copper, zinc, iron, tin, and lead. It is exactly their order with respect to conducting power for electricity, and, with the exception of iron, is the order presented by the magneto-rotation experiments of Messrs. Babbage, Herschel, Harris, &c. The iron has additional power in the latter kind of experiments, because of its ordinary magnetic relations, and its place relative to magneto-electric action of the kind now under investigation cannot be ascertained by such trials. In the manner above described it may be correctly ascertained[A].

 [A] Mr. Christie, who being appointed reporter upon this paper, had it
 in his hands before it was complete, felt the difficulty (202.); and
 to satisfy his mind, made experiments upon iron and copper with the
 large magnet(44.), and came to the same conclusions as I have arrived
 at. The two sets of experiments were perfectly independent of each
 other, neither of us being aware of the other's proceedings.

212. It must still be observed that in these experiments the whole effect between different metals is not obtained; for of the thirty-four feet of wire included in each circuit, eighteen feet are copper in both, being the wire of the galvanometer coils; and as the whole circuit is concerned in the resulting force of the current, tin's circumstance must tend to diminish the difference which would appear between the metals if the circuits were of the same substances throughout. In the present case the difference obtained is probably not more than a half of that which would be given if the whole of each circuit were of one metal.

213. These results tend to prove that the currents produced by magneto-electric induction in bodies is proportional to their conducting power. That they are _exactly_ proportional to and altogether dependent upon the conducting power, is, I think, proved by the perfect neutrality displayed when two metals or other substances, as acid, water, &c. &c. (201. 186.), are opposed to each other in their action. The feeble current which tends to be produced in the worse conductor, has its transmission favoured in the better conductor, and the stronger current which tends to form in the latter has its intensity diminished by the obstruction of the former; and the forces of generation and obstruction are so perfectly neutralize each other exactly. Now as the obstruction is inversely as the balanced as to conducting power, the tendency to generate a current must be directly as that power to produce this perfect equilibrium.

214. The cause of the equality of action under the various circumstances described, where great extent of wire (183.) or wire and water (181.) were connected together, which yet produced such different effects upon the magnet, is now evident and simple.

215. The effects of a rotating substance upon a needle or magnet ought, where ordinary magnetism has no influence, to be directly as the conducting power of the substance; and I venture now to predict that such will be found to be the case; and that in all those instances where non-conductors have been supposed to exhibit this peculiar influence, the motion has been due to some interfering cause of an ordinary kind; as mechanical communication of motion through the parts of the apparatus, or otherwise (as in the case Mr. Harris has pointed out[A]); or else to ordinary magnetic attractions. To distinguish the effects of the latter from those of the induced electric currents, I have been able to devise a most perfect test, which shall be almost immediately described (243.).

 [A] Philosophical Transactions, 1831. p. 68.

216. There is every reason to believe that the magnet or magnetic needle will become an excellent measurer of the conducting power of substances rotated near it; for I have found by careful experiment, that when a constant current of electricity was sent successively through a series of wires of copper, platina, zinc, silver, lead, and tin, drawn to the same diameter; the deflection of the needle was exactly equal by them all. It must be remembered that when bodies are rotated in a horizontal plane, the magnetism of the earth is active upon them. As the effect is general to the whole of the plate, it may not interfere in these cases; but in some experiments and calculations may be of important consequence.

217. Another point which I endeavoured to ascertain, was, whether it was essential or not that the moving part of the wire should, in cutting the magnetic curves, pass into positions of greater or lesser magnetic force; or whether, always intersecting curves of equal magnetic intensity, the mere motion was sufficient for the production of the current. That the latter is true, has been proved already in several of the experiments on terrestrial magneto-electric induction. Thus the electricity evolved from the copper plate (149.), the currents produced in the rotating globe (161, &c.), and those passing through the moving wire (171.), are all produced under circumstances in which the magnetic force could not but be the same during the whole experiments.

218. To prove the point with an ordinary magnet, a copper disc was cemented upon the end of a cylinder magnet, with paper intervening; the magnet and disc were rotated together, and collectors (attached to the galvanometer) brought in contact with the circumference and the central part of the copper plate. The galvanometer needle moved as in former cases, and the _direction_ of motion was the _same_ as that which would have resulted, if the copper only had revolved, and the magnet been fixed. Neither was there any apparent difference in the quantity of deflection. Hence, rotating the magnet causes no difference in the results; for a rotatory and a stationary magnet produce the same effect upon the moving copper.

219. A copper cylinder, closed at one extremity, was then put over the magnet, one half of which it inclosed like a cap; it was firmly fixed, and prevented from touching the magnet anywhere by interposed paper. The arrangement was then floated in a narrow jar of mercury, so that the lower edge of the copper cylinder touched the fluid metal; one wire of the galvanometer dipped into this mercury, and the other into a little cavity in the centre of the end of the copper cap. Upon rotating the magnet and its attached cylinder, abundance of electricity passed through the galvanometer, and in the same direction as if the cylinder had rotated only, the magnet being still. The results therefore were the same as those with the disc (218.).

220. That the metal of the magnet itself might be substituted for the moving cylinder, disc, or wire, seemed an inevitable consequence, and yet one which would exhibit the effects of magneto-electric induction in a striking form. A cylinder magnet had therefore a little hole made in the centre of each end to receive a drop of mercury, and was then floated pole upwards in the same metal contained in a narrow jar. One wire from the galvanometer dipped into the mercury of the jar, and the other into the drop contained in the hole at the upper extremity of the axis. The magnet was then revolved by a piece of string passed round it, and the galvanometer-needle immediately indicated a powerful current of electricity. On reversing the order of rotation, the electrical current was reversed. The direction of the electricity was the same as if the copper cylinder (219.) or a copper wire had revolved round the fixed magnet in the same direction as that which the magnet itself had followed. Thus a _singular independence_ of the magnetism and the bar in which it resides is rendered evident.

221. In the above experiment the mercury reached about halfway up the magnet; but when its quantity was increased until within one eighth of an inch of the top, or diminished until equally near the bottom, still the same effects and the _same direction_ of electrical current was obtained. But in those extreme proportions the effects did not appear so strong as when the surface of the mercury was about the middle, or between that and an inch from each end. The magnet was eight inches and a half long, and three quarters of an inch in diameter.

222. Upon inversion of the magnet, and causing rotation in the same direction, i.e. always screw or always unscrew, then a contrary current of electricity was produced. But when the motion of the magnet was continued in a direction constant in relation to its _own axis_, then electricity of the same kind was collected at both poles, and the opposite electricity at the equator, or in its neighbourhood, or in the parts corresponding to it. If the magnet be held parallel to the axis of the earth, with its unmarked pole directed to the pole star, and then rotated so that the parts at its southern side pass from west to east in conformity to the motion of the earth; then positive electricity may be collected at the extremities of the magnet, and negative electricity at or about the middle of its mass.

223. When the galvanometer was very sensible, the mere spinning of the magnet in the air, whilst one of the galvanometer wires touched the extremity, and the other the equatorial parts, was sufficient to evolve a current of electricity and deflect the needle.

224. Experiments were then made with a similar magnet, for the purpose of ascertaining whether any return of the electric current could occur at the central or axial parts, they having the same angular velocity of rotation as the other parts (259.) the belief being that it could not.

225. A cylinder magnet, seven inches in length, and three quarters of an inch in diameter, had a hole pierced in the direction of its axis from one extremity, a quarter of an inch in diameter, and three inches deep. A copper cylinder, surrounded by paper and amalgamated at both extremities, was introduced so as to be in metallic contact at the bottom of the hole, by a little mercury, with the middle of the magnet; insulated at the sides by the paper; and projecting about a quarter of an inch above the end of the steel. A quill was put over the copper rod, which reached to the paper, and formed a cup to receive mercury for the completion of the circuit. A high paper edge was also raised round that end of the magnet and mercury put within it, which however had no metallic connexion with that in the quill, except through the magnet itself and the copper rod (fig. 34.). The wires A and B from the galvanometer were dipped into these two portions of mercury; any current through them could, therefore, only pass down the magnet towards its equatorial parts, and then up the copper rod; or vice versa.

226. When thus arranged and rotated screw fashion, the marked end of the galvanometer needle went west, indicating that there was a current through the instrument from A to B and consequently from B through the magnet and copper rod to A (fig. 34.).

227. The magnet was then put into a jar of mercury (fig. 35.) as before (219.); the wire A left in contact with the copper axis, but the wire B dipped in the mercury of the jar, and therefore in metallic communication with the equatorial parts of the magnet instead of its polar extremity. On revolving the magnet screw fashion, the galvanometer needle was deflected in the same direction as before, but far more powerfully. Yet it is evident that the parts of the magnet from the equator to the pole were out of the electric circuit.

228. Then the wire A was connected with the mercury on the extremity of the magnet, the wire B still remaining in contact with that in the jar (fig. 36.), so that the copper axis was altogether out of the circuit. The magnet was again revolved screw fashion, and again caused the same deflection of the needle, the current being as strong as it was in the last trial (227.), and much stronger than at first (226.).

229. Hence it is evident that there is no discharge of the current at the centre of the magnet, for the current, now freely evolved, is up through the magnet; but in the first experiment (226.) it was down. In fact, at that time, it was only the part of the moving metal equal to a little disc extending from the end of the wire B in the mercury to the wire A that was efficient, i.e. moving with a different angular velocity to the rest of the circuit (258.); and for that portion the direction of the current is consistent with the other results.

230. In the two after experiments, the _lateral_ parts of the magnet or of the copper rod are those which move relative to the other parts of the circuit, i.e. the galvanometer wires; and being more extensive, intersecting more curves, or moving with more velocity, produce the greater effect. For the discal part, the direction of the induced electric current is the same in all, namely, from the circumference towards the centre.

      *       *       *       *       *

231. The law under which the induced electric current excited in bodies moving relatively to magnets, is made dependent on the intersection of the magnetic curves by the metal (114.) being thus rendered more precise and definite (217. 220. 224.), seem now even to apply to the cause in the first section of the former paper (26.); and by rendering a perfect reason for the effects produced, take away any for supposing that peculiar condition, which I ventured to call the electro-tonic state (60.).

232. When an electrical current is passed through a wire, that wire is surrounded at every part by magnetic curves, diminishing in intensity according to their distance from the wire, and which in idea may be likened to rings situated in planes perpendicular to the wire or rather to the electric current within it. These curves, although different in form, are perfectly analogous to those existing between two contrary magnetic poles opposed to each other; and when a second wire, parallel to that which carries the current, is made to approach the latter (18.), it passes through magnetic curves exactly of the same kind as those it would intersect when carried between opposite magnetic poles (109.) in one direction; and as it recedes from the inducing wire, it cuts the curves around it in the same manner that it would do those between the same poles if moved in the other direction.

233. If the wire NP (fig. 40.) have an electric current passed through it in the direction from P to N, then the dotted ring may represent a magnetic curve round it, and it is in such a direction that if small magnetic needles lie placed as tangents to it, they will become arranged as in the figure, _n_ and _s_ indicating north and south ends (14. _note_.).

234. But if the current of electricity were made to cease for a while, and magnetic poles were used instead to give direction to the needles, and make them take the same position as when under the influence of the current, then they must be arranged as at fig. 41; the marked and unmarked poles _ab_ above the wire, being in opposite directions to those _a'b'_ below. In such a position therefore the magnetic curves between the poles _ab_ and _a'b'_ have the same general direction with the corresponding parts of the ring magnetic curve surrounding the wire NP carrying an electric current.

235. If the second wire _pn_ (fig. 40.) be now brought towards the principal wire, carrying a current, it will cut an infinity of magnetic curves, similar in direction to that figured, and consequently similar in direction to those between the poles _ab_ of the magnets (fig. 41.), and it will intersect these current curves in the same manner as it would the magnet curves, if it passed from above between the poles downwards. Now, such an intersection would, with the magnets, induce an electric current in the wire from _p_ to _n_ (114.); and therefore as the curves are alike in arrangement, the same effect ought to result from the intersection of the magnetic curves dependent on the current in the wire NP; and such is the case, for on approximation the induced current is in the opposite direction to the principal current (19.).

236. If the wire _p'n'_ be carried up from below, it will pass in the opposite direction between the magnetic poles; but then also the magnetic poles themselves are reversed (fig. 41.), and the induced current is therefore (114.) still in the same direction as before. It is also, for equally sufficient and evident reasons, in the same direction, if produced by the influence of the curves dependent upon the wire.

237. When the second wire is retained at rest in the vicinity the principal wire, no current is induced through it, for it is intersecting no magnetic curves. When it is removed from the principal wire, it intersects the curves in the opposite direction to what it did before (235.); and a current in the opposite direction is induced, which therefore corresponds with the direction of the principal current (19.). The same effect would take place if by inverting the direction of motion of the wire in passing between either set of poles (fig. 41.), it were made to intersect the curves there existing in the opposite direction to what it did before.

238. In the first experiments (10. 13.), the inducing wire and that under induction were arranged at a fixed distance from each other, and then an electric current sent through the former. In such cases the magnetic curves themselves must be considered as moving (if I may use the expression) across the wire under induction, from the moment at which they begin to be developed until the magnetic force of the current is at its utmost; expanding as it were from the wire outwards, and consequently being in the same relation to the fixed wire under induction as if _it_ had moved in the opposite direction across them, or towards the wire carrying the current. Hence the first current induced in such cases was in the contrary direction to the principal current (17. 235.). On breaking the battery contact, the magnetic curves (which are mere expressions for arranged magnetic forces) may be conceived as contracting upon and returning towards the failing electrical current, and therefore move in the opposite direction across the wire, and cause an opposite induced current to the first.

239. When, in experiments with ordinary magnets, the latter, in place of being moved past the wires, were actually made near them (27. 36.), then a similar progressive development of the magnetic curves may be considered as having taken place, producing the effects which would have occurred by motion of the wires in one direction; the destruction of the magnetic power corresponds to the motion of the wire in the opposite direction.

240. If, instead of intersecting the magnetic curves of a straight wire carrying a current, by approximating or removing a second wire (235.), a revolving plate be used, being placed for that purpose near the wire, and, as it were, amongst the magnetic curves, then it ought to have continuous electric currents induced within it; and if a line joining the wire with the centre of the plate were perpendicular to both, then the induced current ought to be, according to the law (114.), directly across the plate, from one side to the other, and at right angles to the direction of the inducing current.

241. A single metallic wire one twentieth of an inch in diameter had an electric current passed through it, and a small copper disc one inch and a half in diameter revolved near to and under, but not in actual contact with it (fig. 39). Collectors were then applied at the opposite edges of the disc, and wires from them connected with the galvanometer. As the disc revolved in one direction, the needle was deflected on one side: and when the direction of revolution was reversed, the needle was inclined on the other side, in accordance with the results anticipated.

242. Thus the reasons which induce me to suppose a particular state in the wire (60.) have disappeared; and though it still seems to me unlikely that a wire at rest in the neighbourhood of another carrying a powerful electric current is entirely indifferent to it, yet I am not aware of any distinct _facts_ which authorize the conclusion that it is in a particular state.

      *       *       *       *       *

243. In considering the nature of the cause assigned in these papers to account for the mutual influence of magnets and moving metals (120.), and comparing it with that heretofore admitted, namely, the induction of a feeble magnetism like that produced in iron, it occurred to me that a most decisive experimental test of the two views could be applied (215.).

244. No other known power has like direction with that exerted between an electric current and a magnetic pole; it is tangential, while all other forces, acting at a distance, are direct. Hence, if a magnetic pole on one side of a revolving plate follow its course by reason of its obedience to the tangential force exerted upon it by the very current of electricity which it has itself caused, a similar pole on the opposite side of the plate should immediately set it free from this force; for the currents which tend to be formed by the action of the two poles are in opposite directions; or rather no current tends to be formed, or no magnetic curves are intersected (114.); and therefore the magnet should remain at rest. On the contrary, if the action of a north magnetic pole were to produce a southness in the nearest part of the copper plate, and a diffuse northness elsewhere (82.), as is really the case with iron; then the use of another north pole on the opposite side of the same part of the plate should double the effect instead of destroying it, and double the tendency of the first magnet to move with the plate.

245. A thick copper plate (85.) was therefore fixed on a vertical axis, a bar magnet was suspended by a plaited silk cord, so that its marked pole hung over the edge of the plate, and a sheet of paper being interposed, the plate was revolved; immediately the magnetic pole obeyed its motion and passed off in the same direction. A second magnet of equal size and strength was then attached to the first, so that its marked pole should hang _beneath_ the edge of the copper plate in a corresponding position to that above, and at an equal distance (fig. 37.). Then a paper sheath or screen being interposed as before, and the plate revolved, the poles were found entirely indifferent to its motion, although either of them alone would have followed the course of rotation.

246. On turning one magnet round, so that _opposite_ poles were on each side of the plate, then the mutual action of the poles and the moving metal was a maximum.

247. On suspending one magnet so that its axis was level with the plate, and either pole opposite its edge, the revolution of the plate caused no motion of the magnet. The electrical currents dependent upon induction would now tend to be produced in a vertical direction across the thickness of the plate, but could not be so discharged, or at least only to so slight a degree as to leave all effects insensible; but ordinary magnetic induction, or that on an iron plate, would be equally if not more powerfully developed in such a position (251.).

248. Then, with regard to the production of electricity in these cases:--whenever motion was communicated by the plate to the magnets, currents existed; when it was not communicated, they ceased. A marked pole of a large bar magnet was put under the edge of the plate; collectors (86.) applied at the axis and edge of the plate as on former occasions (fig. 38.), and these connected with the galvanometer; when the plate was revolved, abundance of electricity passed to the instrument. The unmarked pole of a similar magnet was then put over the place of the former pole, so that contrary poles were above and below; on revolving the plate, the electricity was more powerful than before. The latter magnet was then turned end for end, so that marked poles were both above and below the plate, and then, upon revolving it, scarcely any electricity was procured. By adjusting the distance of the poles so as to correspond with their relative force, they at last were brought so perfectly to neutralize each other's inductive action upon the plate, that no electricity could be obtained with the most rapid motion.

249. I now proceeded to compare the effect of similar and dissimilar poles upon iron and copper, adopting for the purpose Mr. Sturgeon's very useful form of Arago's experiment. This consists in a circular plate of metal supported in a vertical plane by a horizontal axis, and weighted a little at one edge or rendered excentric so as to vibrate like a pendulum. The poles of the magnets are applied near the side and edges of these plates, and then the number of vibrations, required to reduce the vibrating arc a certain constant quantity, noted. In the first description of this instrument[A] it is said that opposite poles produced the greatest retarding effect, and similar poles none; and yet within a page of the place the effect is considered as of the same kind with that produced in iron.

 [A] Edin. Phil. Journal, 1825, p. 124.

250. I had two such plates mounted, one of copper, one of iron. The copper plate alone gave sixty vibrations, in the average of several experiments, before the arc of vibration was reduced from one constant mark to another. On placing opposite magnetic poles near to, and on each side of, the same place, the vibrations were reduced to fifteen. On putting similar poles on each side of it, they rose to fifty; and on placing two pieces of wood of equal size with the poles equally near, they became fifty-two. So that, when similar poles were used, the magnetic effect was little or none, (the obstruction being due to the confinement of the air, rather,) whilst with opposite poles it was the greatest possible. When a pole was presented to the edge of the plate, no retardation occurred.

251. The iron plate alone made thirty-two vibrations, whilst the arc of vibration diminished a certain quantity. On presenting a magnetic pole to the edge of the plate (247.), the vibrations were diminished to eleven; and when the pole was about half an inch from the edge, to five.

252. When the marked pole was put at the side of the iron plate at a certain distance, the number of vibrations was only five. When the marked pole of the second bar was put on the opposite side of the plate at the same distance (250.), the vibrations were reduced to two. But when the second pole was an unmarked one, yet occupying exactly the same position, the vibrations rose to twenty-two. By removing the stronger of these two opposite poles a little way from the plate, the vibrations increased to thirty-one, or nearly the original number. But on removing it _altogether_, they fell to between five and six.

253. Nothing can be more clear, therefore, than that with iron, and bodies admitting of ordinary magnetic induction, _opposite_ poles on opposite sides of the edge of the plate neutralize each other's effect, whilst _similar_ poles exalt the action; a single pole end on is also sufficient. But with copper, and substances not sensible to ordinary magnetic impressions, _similar_ poles on opposite sides of the plate neutralize each other; _opposite_ poles exalt the action; and a single pole at the edge or end on does nothing.

254. Nothing can more completely show the thorough independence of the effects obtained with the metals by Arago, and those due to ordinary magnetic forces; and henceforth, therefore, the application of two poles to various moving substances will, if they appear at all magnetically affected, afford a proof of the nature of that affection. If opposite poles produce a greater effect than one pole, the result will be due to electric currents. If similar poles produce more effect than one, then the power is _not_ electrical; it is not like that active in the metals and carbon when they are moving, and in most cases will probably be found to be not even magnetical, but the result of irregular causes not anticipated and consequently not guarded against.

255. The result of these investigations tends to show that there are really but very few bodies that are magnetic in the manner of iron. I have often sought for indications of this power in the common metals and other substances; and once in illustration of Arago's objection (82.), and in hopes of ascertaining the existence of currents in metals by the momentary approach of a magnet, suspended a disc of copper by a single fibre of silk in an excellent vacuum, and approximated powerful magnets on the outside of the jar, making them approach and recede in unison with a pendulum that vibrated as the disc would do: but no motion could be obtained; not merely, no indication of ordinary magnetic powers, but none or _any electric current_ occasioned in the metal by the approximation and recession of the magnet. I therefore venture to arrange substances in three classes as regards their relation to magnets; first, those which are affected when at rest, like iron, nickel, &c., being such as possess ordinary magnetic properties; then, those which are affected when in motion, being conductors of electricity in which are produced electric currents by the inductive force of the magnet; and, lastly, those which are perfectly indifferent to the magnet, whether at rest or in motion.

256. Although it will require further research, and probably close investigation, both experimental and mathematical, before the exact mode of action between a magnet and metal moving relatively to each other is ascertained; yet many of the results appear sufficiently clear and simple to allow of expression in a somewhat general manner.--If a terminated wire move so as to cut a magnetic curve, a power is called into action which tends to urge an electric current through it; but this current cannot be brought into existence unless provision be made at the ends of the wire for its discharge and renewal.

257. If a second wire move in the same direction as the first, the same power is exerted upon it, and it is therefore unable to alter the condition of the first: for there appear to be no natural differences among substances when connected in a series, by which, when moving under the same circumstances relative to the magnet, one tends to produce a more powerful electric current in the whole circuit than another (201. 214.).

258. But if the second wire move with a different velocity, or in some other direction, then variations in the force exerted take place; and if connected at their extremities, an electric current passes through them.

259. Taking, then, a mass of metal or an endless wire, and referring to the pole of the magnet as a centre of action, (which though perhaps not strictly correct may be allowed for facility of expression, at present,) if all parts move in the same direction, and with the same angular velocity, and through magnetic curves of constant intensity, then no electric currents are produced. This point is easily observed with masses subject to the earth's magnetism, and may be proved with regard to small magnets; by rotating them, and leaving the metallic arrangements stationary, no current is produced.

260. If one part of the wire or metal cut the magnetic curves, whilst the other is stationary, then currents are produced. All the results obtained with the galvanometer are more or less of this nature, the galvanometer extremity being the fixed part. Even those with the wire, galvanometer, and earth (170.), may be considered so without any error in the result.

261. If the motion of the metal be in the same direction, but the angular velocity of its parts relative to the pole of the magnet different, then currents are produced. This is the case in Arago's experiment, and also in the wire subject to the earth's induction (172.), when it was moved from west to east.

262. If the magnet moves not directly to or from the arrangement, but laterally, then the case is similar to the last.

263. If different parts move in opposite directions across the magnetic curves, then the effect is a maximum for equal velocities.

264. All these in fact are variations of one simple condition, namely, that all parts of the mass shall not move in the same direction across the curves, and with the same angular velocity. But they are forms of expression which, being retained in the mind, I have found useful when comparing the consistency of particular phenomena with general results.

_Royal Institution, December 21, 1831._