Page:EB1911 - Volume 11.djvu/390

From Wikisource
Jump to navigation Jump to search
This page has been proofread, but needs to be validated.
372
FUSION


no longer remains constant during freezing, but falls more and more rapidly as the proportion of B in the liquid increases. When the eutectic temperature is reached there is a second F.P. or arrest at which the whole of the remaining liquid solidifies. With 20% of B the first F.P. is further lowered, and the temperature falls faster. The eutectic F.P. is of longer duration, but still at the same temperature. For an alloy of the composition of the eutectic itself there is no arrest until the eutectic temperature is reached, at which the whole solidifies without change of temperature. There is a great advantage in recording these curves automatically, as the primary arrest is often very slight, and difficult to observe in any other way.

7. Change of Solubility with Temperature.—The lowering of the F.P. of a solution with increase of concentration, as shown by the F.P. or solubility curves, may be explained and calculated by equation (1) in terms of the osmotic pressure of the dissolved substance by analogy with the effect of mechanical pressure. It is possible in salt solutions to strain out the salt mechanically by a suitable filter or “semi-permeable membrane,” which permits the water to pass, but retains the salt. To separate 1 gramme of salt requires the performance of work PV against the osmotic pressure P, where V is the corresponding diminution in the volume of the solution. In dilute solutions, to which alone the following calculation can be applied, the volume V is the reciprocal of the concentration C of the solution in grammes per unit volume, and the osmotic pressure P is equal to that of an equal number of molecules of gas in the same space, and may be deduced from the usual equation of a gas,

P = Rθ/VM = RθC/M, (4)

where M is the molecular weight of the salt in solution, θ the absolute temperature, and R a constant which has the value 8.32 joules, or nearly 2 calories, per degree C. It is necessary to consider two cases, corresponding to the curves CB and AB in fig. 1, in which the solution is saturated with respect to salt and water respectively. To facilitate description we take the case of a salt dissolved in water, but similar results apply to solutions in other liquids and alloys of metals.

(a) If unit mass of salt is separated in the solid state from a saturated solution of salt (curve CB) by forcing out through a semi-permeable membrane against the osmotic pressure P the corresponding volume of water V in which it is dissolved, the heat evolved is the latent heat of saturated solution of the salt Q together with the work done PV. Writing (Q + PV) for L, and V for (v″ − v′) in equation (1), and substituting P for p, we obtain

Q + PV = VθdP/dθ, (5)

which is equivalent to equation (1), and may be established by similar reasoning. Substituting for P and V in terms of C from equation (4), if Q is measured in calories, R = 2, and we obtain

QC = 2θ2dC/dθ, (6)

which may be integrated, assuming Q constant, with the result

2logeC″/C′ = Q/θ′ − Q/θ″, (7)

where C′, C″ are the concentrations of the saturated solution corresponding to the temperatures θ′ and θ″. This equation may be employed to calculate the latent heat of solution Q from two observations of the solubility. It follows from these equations that Q is of the same sign as dC/dθ, that is to say, the solubility increases with rise of temperature if heat is absorbed in the formation of the saturated solution, which is the usual case. If, on the other hand, heat is liberated on solution, as in the case of caustic potash or sulphate of calcium, the solubility diminishes with rise of temperature.

(b) In the case of a solution saturated with respect to ice (curve AC), if one gramme of water having a volume v is separated by freezing, we obtain a precisely similar equation to (5), but with L the latent heat of fusion of water instead of Q, and v instead of V. If the solution is dilute, we may neglect the external work Pv in comparison with L, and also the heat of dilution, and may write P/t for dP/dθ, where t is the depression of the F.P. below that of the pure solvent. Substituting for P in terms of V from equation (4), we obtain

t = 2θ2v/LVM = 2θ2w/LWM, (8)

where W is the weight of water and w that of salt in a given volume of solution. If M grammes of salt are dissolved in 100 of water, w = M and W = 100. The depression of the F.P. in this case is called by van ‘t Hoff the “Molecular Depression of the F.P.” and is given by the simple formula

t = .02θ2/L. (9)

Equation (8) may be used to calculate L or M, if either is known, from observations of t, θ and w/W. The results obtained are sufficiently approximate to be of use in many cases in spite of the rather liberal assumptions and approximations effected in the course of the reasoning. In any case the equations give a simple theoretical basis with which to compare experimental data in order to estimate the order of error involved in the assumptions. We may thus estimate the variation of the osmotic pressure from the value given by the gaseous equation, as the concentration of the solution or the molecular dissociation changes. The most uncertain factor in the formula is the molecular weight M, since the molecule in solution may be quite different from that denoted by the chemical formula of the solid. In many cases the molecule of a metal in dilute solution in another metal is either monatomic, or forms a compound molecule with the solvent containing one atom of the dissolved metal, in which case the molecular depression is given by putting the atomic weight for M. In other cases, as Cu, Hg, Zn, in solution in cadmium, the depression of the F.P. per atom, according to Heycock and Neville, is only half as great, which would imply a diatomic molecule. Similarly As and Au in Cd appear to be triatomic, and Sn in Pb tetratomic. Intermediate cases may occur in which different molecules exist together in equilibrium in proportions which vary according to the temperature and concentration. The most familiar case is that of an electrolyte, in which the molecule of the dissolved substance is partly dissociated into ions. In such cases the degree of dissociation may be estimated by observing the depression of the F.P., but the results obtained cannot always be reconciled with those deduced by other methods, such as measurement of electrical conductivity, and there are many difficulties which await satisfactory interpretation.

Exactly similar relations to (8) and (9) apply to changes of boiling point or vapour pressure produced by substances in solution (see Vaporization), the laws of which are very closely connected with the corresponding phenomena of fusion; but the consideration of the vapour phase may generally be omitted in dealing with the fusion of mixtures where the vapour pressure of either constituent is small.

Fig. 3.—Solubility Curves of Hydrates.

8. Hydrates.—The simple case of a freezing point curve, illustrated in fig. 1, is generally modified by the occurrence of compounds of a character analogous to hydrates of soluble salts, in which the dissolved substance combines with one or more molecules of the solvent. These hydrates may exist as compound molecules in the solution, but their composition cannot be demonstrated unless they can be separated in the solid state. Corresponding to each crystalline hydrate there is generally a separate branch of the solubility curve along which the crystals of the hydrate are in equilibrium with the saturated solution. At any given temperature the hydrate possessing the least solubility is the most stable. If two are present in contact with the same solution, the more soluble will dissolve, and the less soluble will be formed at its expense until the conversion is complete. The two hydrates cannot be in equilibrium with the same solution except at the temperature at which their solubilities are equal, i.e. at the point where the corresponding curves of solubility intersect. This temperature is called the “Transition Point.” In the case of ZnSO4, as shown in fig. 3, the heptahydrate, with seven molecules of water, is the least soluble hydrate at ordinary temperatures, and is generally deposited from saturated solutions. Above 39° C., however, the hexahydrate, with six molecules, is less soluble, and a rapid conversion of the hepta- into the hexahydrate occurs if the former is heated above the transition point. The solubility of the hexahydrate is greater than that of the heptahydrate below 39°, but increases more slowly with rise of temperature. At about 80° C. the hexahydrate gives place to the monohydrate, which dissolves in water with evolution of heat, and diminishes in solubility with rise of temperature. Intermediate hydrates exist, but they are more soluble, and cannot be readily isolated. Both the mono- and hexahydrates are capable of existing in equilibrium with saturated solutions at temperatures far below their transition points, provided that the less soluble hydrate is not present in the crystalline form. The solubility curves can therefore be traced, as in fig. 3, over an extended range of temperature. The equilibrium of each hydrate with the solvent, considered separately, would present a diagram of two branches similar to fig. 1, but as a rule only a small portion of each curve can be realized, and the complete solubility curve, as experimentally determined, is composed of a number of separate pieces corresponding to the ranges of minimum solubility of different hydrates. Failure to recognize this, coupled with the