Page:Newton's Principia (1846).djvu/571

From Wikisource
Jump to navigation Jump to search
This page has been validated.
the system of the world.
565

time of the comet's ingress into the sphere of the orbis magnus, to Jan. 4d. 10h. afternoon, the time of its egress from the same, there are 55d. 16h. The small difference of 7¾h. in this rude way of computing is to be neglected, and perhaps may arise from the comet's motion being some small matter slower, as it must have been if the true orbit in which it was carried was an ellipsis. The middle time between its ingress and egress was December 8d.2h. of the morning; and therefore at this time the comet ought to have been in its perihelion. And accordingly that very day, just before sunrising, Dr. Halley (as we said) saw the tail short and broad, but very bright, rising perpendicularly from the horizon. From the position of the tail it is certain that the comet had then crossed over the ecliptic, and got into north latitude, and therefore had passed by its perihelion, which lay on the other side of the ecliptic, though it had not yet come into conjunction with the sun; and the comet [see more of this famous comet, p. 475 to 486] being at this time between its perihelion and its conjunction with the sun, must have been in its perihelion a few hours before; for in so near a distance from the sun it must have been carried with great velocity, and have apparently described almost half a degree every hour.

By like computations I find that the comet of 1618 entered the sphere of the orbis magnus December 7, towards sun-setting; but its conjunction with the sun was Nov. 9, or 10, about 28 days intervening, as in the preceding comet; for from the size of the tail of this, in which it was equal to the preceding, it is probable that this comet likewise did come almost into a contact with the sun. Four comets were seen that year of which this was the last. The second, which made its first appearance October 31, in the neighbourhood of the rising sun, and was soon after hid under the sun's rays, I suspect to have been the same with the fourth, which emerged out of the sun's rays about Nov. 9. To these we may add the comet of 1607, which entered the sphere of the orbis magnus Sept. 14, O.S. and arrived at its perihelion distance from the sun about October 19, 35 days intervening. Its perihelion distance subtended an apparent angle at the earth of about 23 degrees, and was therefore of 390 parts. And to this number of parts about 34 days correspond in Tab. 1. Farther; the comet of 1665 entered the sphere of the orbis magnus about March 17, and came to its perihelion about April 16, 30 days intervening. Its perihelion distance subtended an angle at the earth of about seven degrees, and therefore was of 122 parts: and corresponding to this number of parts, in Tab. 1, we find 30 days. Again; the comet of 1682 entered the sphere of the orbis magnus about Aug. 11, and arrived at its perihelion about Sep. 16, being then distant from the sun by about 350 parts, to which, in Tab. I, belong 33½ days. Lastly; that memorable comet of Regiomontanus, which in 1472 was carried through the circum-polar parts of our northern hemisphere with such rapidity as to describe 40