Page:Treatise on poisons in relation to medical jurisprudence, physiology, and the practice of physic (IA treatiseonpoison00chriuoft).pdf/211

From Wikisource
Jump to navigation Jump to search
This page needs to be proofread.
  • duction seems to consider the crust undistinguishable from that formed

in similar circumstances by cinnabar.[1] Crusts of cinnabar, however, do not present the peculiar character possessed by the internal surface of arsenic.—Zinc, it is said, may be sublimed in its metallic state; but the sublimation of zinc requires a full white heat; which in the process for arsenic cannot be generated.—Tellurium, cadmium, and potassium sublime at a lower heat; but these metals are so exceedingly rare, that it is quite unnecessary to particularize the characters of their sublimates.—Lastly, it is said that a crust may be produced from arsenic contained in the glass of the tube. A few years ago MM. Ozanam and Idt of Lyons detected arsenic in the remains of a body which had been seven years interred; but subsequently M. Idt imagined he had discovered that the glass used in the analysis contained arsenic, and yielded it by the process of reduction. He accordingly retracted his original opinion; and the person accused of administering the poison was acquitted. An extended inquiry, however, was in consequence undertaken by the Parisian Academy of Medicine at the request of the French government. And the result was that no arsenic could be detected in the glass tubes used by MM. Ozanam and Idt; and that although arsenic is sometimes used in glass-making, and a trace of it may be retained in some opaque glasses or enamels, it cannot be detected by any process of analysis in any of the clear glass met with in commerce,[2] the whole arsenic being volatilized during the manufacture of the glass.

It may therefore be safely laid down that the appearances exhibited by a well-formed arsenical crust, even in the minute quantity of a 300th part of a grain, are imitated by no substance in nature which can be sublimed by the process for the reduction of arsenic.

But should farther evidence be required as to the nature of the crust, this may be obtained by subjecting it to oxidation by heat.

The best method of doing so is to heat the ball containing the flux deprived of arsenic, to attach a bit of glass tube to its end, and to draw this gently off in the spirit-flame, taking care to prevent the flux being driven forward on the crust. This being done, the whole crust, or, if it is large, a portion of it, is to be chased up and down the tube with a small spirit-lamp flame till it is all converted into a white powder. In order to show the crystalline form of the powder distinctly, let the flame be reduced to the volume of a pea by drawing in the wick, and let the part of the tube containing the oxide be held half an inch or an inch above it. By repeated trials sparkling crystals will at length be formed, which are octaedres,—the crystalline form of arsenious acid. The triangular facettes of the octaedres may be sometimes seen with the naked eye, though the original crust was only a fiftieth of a grain or even less; and they may be always seen with a lens of four powers, the tube being held between the eye and a lighted candle or a ray of sunshine, either of

  1. American Journal of Medical Science, x. 126.
  2. Annales d'Hyg. Pub. et de Med. Lég. xi. 224.