Page:Elektrische und Optische Erscheinungen (Lorentz) 008.jpg

From Wikisource
Jump to navigation Jump to search
This page has been proofread, but needs to be validated.

the ions, with the known equations of Maxwell's theory, and generally express that any change that was caused by an ion in the aether, propagates with the velocity of light. But we regard the force exerted by the aether on a charged particle, as a function of the state of that medium at the point where the particle is located. The adopted fundamental law differs in a major point from the laws, that were introduced by Weber and Clausius. The influence that was suffered by a particle B due to the vicinity of a second one A, indeed depends on the motion of the latter, but not on its instantaneous motion. Much more relevant is the motion of A some time earlier, and the adopted law corresponds to the requirement for the theory of electrodynamics, that was presented by Gauss in 1845 in his known letter to Weber[1]

In general, the assumptions that I introduce represent in a certain sense a return to the earlier theories of electricity. The core of Maxwell's views is therefore not lost, but it cannot be denied that with the adoption of ions we are not far away from the electric particles, which were used earlier. In some simple cases, this occurs particularly clear. Since the essence of electric charge is seen by us in the accumulation of positive or negative charged particles, and since the basic formulas for stationary ions give Coulomb's law, therefore, for example, the entire electrostatics can be brought into the earlier form.

  1. Gauss. Werke, Bd. 5, p. 629.