Page:Elektrische und Optische Erscheinungen (Lorentz) 087.jpg

From Wikisource
Jump to navigation Jump to search
This page has been proofread, but needs to be validated.

can have the same meaning when the body is moving.

In a stationary, homogeneous medium, for example, light bundles are possible which are limited by cylindric surfaces, if it is only assumed that the dimensions of the bisections are much greater than the wave length. By our theorem, such bundles also can exist in a moving system.

The described lines of the mentioned cylindric surfaces we call light rays, and in the case of translation: relative light rays. The cylinders we have to imagine as rigidly connected with ponderable matter; thus they form the paths for the propagation of light relative to that matter.

c. A cylindric light bundle falls upon a plane limiting-surface in a stationary system, and it will be mirrored and refracted by it, — for generality we want to say: bi-refracted. The new light bundles have a cylindric border as well. If we now apply the things said under a and b to the corresponding case of the moving system, then we come to the theorem:

In the moving system, relative light rays of relative oscillation period T were mirrored and refracted by the same laws, as rays of the oscillations period T in the stationary system.

d. Let in the stationary system be a transparent body of arbitrary form, that was hit by a cylindric light bundle, and by that an arbitrary interference- or diffraction-phenomenon occurs. If dark strips do occur on that occasion, then they must appear in the corresponding state of the moving system at exactly the same locations.

An extreme case of a diffraction-phenomenon is the unification of all light in a focus. By the preceding, the laws by which a light ray of certain cylindric limitation is concentrated by a telescope objective, won't be changed at all by a translation.

e. While in corresponding states the lateral limitation of a light ray is the same, the wave normals have different directions. If it is set, for example, that plane waves are propagating with the velocity W in the stationary system whose perpendicular has the direction (), so that