Jump to content

History of botany (1530–1860)/Book 2/Chapter 4

From Wikisource
4243396History of Botany, Book 2 — Chapter 4Henry E. F. GarnseyJulius von Sachs

CHAPTER IV.

History of Development of the Cell, Formation of Tissues, Molecular Structure of Organised Forms.

1840-1860.

In the period between 1830 and 1840 it had come to be understood, that the old theories of cell-formation of Wolff, Sprengel, Mirbel, and others, resting on indistinct perceptions and not on direct and exact observation, could only give an approximate idea of the formation of cells. But in the course of that time really different cases of formation of new cells were accurately observed by Mirbel, and more especially by von Mohl, who described different modes of formation of spores, and in 1 835 the first case of vegetative cell-division. Unfortunately these observations, excellent in themselves, applied to cases of cell-formation which do not occur in the ordinary multiplication of cells in growing organs, and von Mohl guarded himself from founding a general theory of cell-formation on his observations on cells of reproduction and on a growing filamentous Alga. Mirbel also cautiously regarded the formation of pollen-cells and that which he supposed to be the process in the germination of spores as cases of a peculiar kind, adhering to his old theory of the origin of ordinary tissue-cells.

Schleiden's behaviour was different. Having somewhat hastily observed the free cell-formation in the embryo-sac of Phanerogams in 1838, he proceeded at once to frame a theory upon it which was to apply to all cases of cell-formation, and especially to that in growing organs. The very positive way

in which he announced this theory and set aside every objection that was made to it, combined with his great reputation at the time, at once procured for it the consideration of botanists generally; and the most important representatives of phytotomy, von Mohl himself at first not excepted, allowed that there was a certain amount of justification for it. It was a question in which theoretical considerations were not of primary importance; direct and varied observation of careful preparations with strong magnifying powers could alone form the basis for further investigation. Unger showed in this way that the processes at the growing point of the stem could scarcely be reconciled with Schleiden's theory, and in this view he was supported by the English botanist Henfrey; but Nägeli was the first who addressed himself with energy and sound reasoning to the important and difficult question, how cells are formed in reproductive and growing vegetative organs, and how far the processes are the same in the lower Cryptogams and in the Phanerogams. He set out by assuming that Schleiden's theory was in the main correct, but his long-continued investigations led him finally to the conviction that it must be entirely abandoned, and he proposed the outlines of the theory of cell-formation which is accepted at the present time. In this case, as before in questions of morphology, he applied himself first, and with great success, to the investigation of the lower Cryptogams, while Alexander Braun's observations on some very simple Algae contributed materially to the further development of the cell-theory, and especially to extending and correcting the idea of the cell; Hofmeister's researches also in embryology not only produced great results for morphology, but at the same time supplied a variety of facts which served to complete Nägeli's view. The further this was worked out, the more apparent it became that the external circumstances in the processes of cell-formation might be very various, and that von Mohl's earlier observations especially gave a correct representation of individual and typical cases; but more important than this result was the fact declared by Nägeli in 1846, that in all these different kinds of cell-formation it was only the external and secondary matters that varied, while the essential part of the process was in all cases the same, and it was soon per- ceived that cell-formation in the animal kingdom, which was now being more thoroughly examined, agreed in the main with that of the vegetable kingdom, as Schwann and Kolliker had intimated in 1839 and 1845.

It is unnecessary to give any account here of the totally different theories which Theodor Hartig and Karsten proposed about the same time. They do not rest on careful observation, and we may omit them not merely because they are rejected by the unanimous judgment of better observers, but because they had no influence upon the development of the doctrine of cell-formation, and are therefore without historical interest.

It lies in the nature of the case, that investigations into the origin and multiplication of cells should turn the attention of observers more and more to their living contents, for these are actively and immediately concerned with the formation of new cells. The various granular, crystalline, and mucilaginous portions of the contents of cells had been repeatedly observed before 1840, and Schleiden and Meyen had specially studied the 'movements of cell-sap'; but it was in the course of observations on the history of development between 1840 and 1850 that attention was first called to a substance which plays a regular part in the formation of new cells, which envelopes the cell-nucleus discovered by Robert Brown, which undergoes the most important changes as the cell grows, which forms the entire substance of swarm-spores, and the disappearance of which leaves behind it a dead framework of cell-membrane. This substance, which is much more immediately concerned with sustaining the processes of life than is the cell-wall, was seen by Schleiden in 1838 and taken for gum. It was more carefully studied by Nägeli between 1842 and 1846, and perceived by him to be nitrogenous matter. Von Mohl described it in 1844 and 1846 from new points of view, gave it the name of protoplasm which it still bears, and showed that it is this substance, and not the proper cell-sap, which carries out the movement of rotation and circulation in cells discovered by Corti in the previous century, and again observed by Treviranus in 1811. The Algae proved highly instructive in the study of this remarkable substance also. The swarm-spores of Algae and Fungi observed by Alexander Braun, Thuret, Nageli, Pringsheim, and De Bary showed that protoplasm is not dependent on the cell-membrane for its vitality, that by virtue of its own internal powers it can alter its form, and even move in space. In 1855 Unger in his 'Lehrbuch' pointed out the resemblance of this substance to the matter known as sarcode in the lower forms of animals, a resemblance brought out more plainly in 1859, when De Bary's studies of the Myxomycetes proved that the substance of these forms was protoplasm, which continues to live for a considerable time, and often in large masses, before it forms cell-membranes. Zootomists now began to take an interest in these results of botanical research ; Max Schulze (1863), Briicke, and Kiihne studied animal and vegetable protoplasm, and the conviction gained ground more and more in the years from 1860 to 1870 that protoplasm is the immediate principle of vegetable and animal life. This discovery is one of the most important results of research in modern natural science.

Not less important were the results obtained from the study of the rest of the organised contents of cells; von Mohl proved that chlorophyll-corpuscles, the most considerable organs of nutrition in the plant, are formed of protoplasm, and Theodor Hartig, though his cell-theory was a mistake, did good service by his discovery of aleurone-grains in seeds and of the crystalloids which sometimes occur in the grains, and which are also formed of protoplasm and renewed from protoplasm. Radikofer, Nägeli, and others added to our knowledge of the form and chemical composition of these aleurone-grains. To starch-grains, which had been frequently examined, by Payen especially, Nägeli devoted an investigation at once comprehensive and profound, and obtained results of extraordinary value; these were given to the world in an exhaustive work published in 1858 under the title 'Die Stärkekörner,' and form an epoch not in phytotomy only, but in the general knowledge of organised bodies. By the application of methods of research unknown before in microscopy, Nägeli arrived at clear ideas of the molecular structure of the grains, and of their growth by the introduction of new molecules between the old ones. This theory of intussusception founded on the observation of starch-grains derives its great importance from the fact that it served directly to explain the growth of cell-membrane, could be applied generally to molecular processes in the formation and alteration of organic structures, and accounted for a long series of remarkable phenomena, especially the behaviour of organised bodies in polarised light. Nägeli's molecular theory is the first successful attempt to apply mechanico-physical considerations to the explanation of the phenomena of organic life.

While men of the highest powers of mind were devoting themselves to the solution of these difficult problems, the study of tissues was not neglected in the years after 1840, and here too it was Nägeli who gave the chief impulse and the direction to further development. In the periodical which he published in conjunction with Schleiden he had already (1844-46) given an account of some searching enquiries which he had made into the first processes in the formation of vascular bundles from uniform fundamental tissue; in the Cryptogams he observed the production of the tissue of the whole plant from the apical cell of the growing stem, and this discovery, still further pursued by Hofmeister especially, has given rise during the last twenty years to a copious literature, which has been of service to the theory of the formation of tissues, to morphology, and consequently also to systematic botany. The researches of Hofmeister, Nägeli, Hanstein, Sanio, and others into the first formation of vascular bundles from the fundamental tissue of young organs led to important results for morphology, in so far as it was now for the first time possible to judge of the morphological value of anatomical and histological relations. The growth in thickness of woody plants, a question of primary importance to vegetable physiology, was first made intelligible by the discovery of the mode of formation of vascular bundles and their true relation to cambium; Hanstein and Nageli, and afterwards Sanio especially, cleared up the questions connected with growth in thickness in their main features before and after 1860.


When we pass on to show how the great results above- mentioned were attained, we encounter some difficulties. After 1840 botanical literature multiplied to an extent before unknown; it is from elaborate monographs on single subjects in phytotomy, from some text-books, and especially from smaller essays in botanical periodicals that we must gather an account of the further development of scientific thought. Much as the founding of scientific periodicals has facilitated communication between professed botanists, yet this form of literature makes it more difficult to see the way clearly through the work of earlier periods and to discover the historical connection in the science, not to speak of the harm that usually results from it to young and inexperienced students.

Such being the nature of the sources from which we must draw our information, we shall obtain a better general view of the whole subject if we depart from the practice of former chapters, and follow out the more important questions in their historical development instead of connecting them directly with leading persons. Such a treatment of the subject is indeed suggested by the fact that we are now no longer on pure historic ground; for the majority of the men who have developed modern doctrines since 1840 are still alive, and it must be uncertain whether the account here attempted may not be impugned on some ground or other. Owing to the extraordinary diversity of opinion that exists among botanists even on the most general questions in the science, it is extremely difficult to ascertain what can be considered as a common possession, an unfortunate condition of things, from which no science perhaps suffers so much as botany.

The extent to which individual botanists have contributed to the advance of phytotomy during the period under consideration will appear of itself from the following narrative; and if we speak almost exclusively of Germans, it is for the simple reason that Englishmen from Crew's time till now can scarcely be said to have added anything to our knowledge of phytotomy; the Italians also, once so gloriously represented by Malpighi, scarcely come under consideration in the questions now to be dealt with, while French botanists, represented by Mirbel in the preceding period, though they have produced many works on phytotomy since his time, have had no important share in deciding the fundamental questions of modern science.

In the preceding period it was necessary to take into consideration the increasing improvement of the microscope, in order to understand the development of opinion on vegetable structure; but it is scarcely needful to do so after 1840. Since that time good and serviceable instruments with strong magnifying powers and clear definition have been within the reach of every phytotomist; and though improvements are still being constantly made, yet the microscopes that were in the hands of skilful observers between 1840 and 1860 were fully adequate to deciding the new questions proposed to them. The chief improvement effected in the microscope during this period was the fitting it with apparatus for the polarisation of light, and for the more convenient measurement of objects; we shall see presently what influence the former improvement had on the perfecting of Nägeli's molecular theory. As microscopes improved and the questions to be solved grew more difficult, it became necessary to bestow increased care on the preparation of objects; it was no longer sufficient to cut or dissect neatly, and so learn the form of the solid portions of vegetable structure; measures of precaution and auxiliary measures of the most various kinds were needed to obtain a clear view of the soft contents of cells, and to observe the protoplasm as far as possible in a living state and protected from prejudicial influences; all sorts of chemical reagents were applied to make the objects more transparent, or to show their physical and chemical characters. The method invented by Franz Schulze before 1851 deserves to be specially mentioned; it consisted in isolating the cells in a few minutes' time by boiling them in a mixture of nitric acid and potassium-chlorate, and thus shortening Moldenhawer's process of maceration or superseding it altogether. In a word, the technicalities of the microscope were perfected in a variety of ways by Schleiden, von Mohl, Nägeli, Unger, Schacht, Hofmeister, Pringsheim, De Bary, Sanio, and others, and raised to an art which must be learnt and practised like any other art. Young microscopists were able after 1850 to learn this art in the laboratories of their elders, and to profit by their technical experience and scientific counsels; schools of phytotomy were formed at least in the German universities; elsewhere, it is true, the old condition of things remained in which everyone had to trust to himself from the beginning.

The general dissemination of good microscopes was accompanied by a higher standard of requirement in the execution of drawings from the instrument, especially after von Mohl had shown the way; and the invention of lithography and the revival of wood-engraving ministered to the needs of science, supplying the place of the old costly copper-plate printing. Hence we find an increasing number of beautiful drawings in scientific monographs; the text-books also could now be supplied with an abundance of figures, and this greatly promoted the general understanding of things which could otherwise be seen only under the glass of each observer. From the close of the 16th century wood-cuts had fallen more and more into disuse, and had been replaced by copper-plates; after 1840 wood-engraving was restored to its old rights and was found to be a more convenient method of pictorial illustration, especially for text-books; thus Schleiden's 'Grundzüge' of 1842, von Mohl's 'Vegetabilische Zelle' of 1851, Unger's and Schacht's text-books were enriched with many and sometimes very beautiful wood-cuts. Lithographs were generally preferred for periodicals and monographs; the 'Botanische Zeitung,' founded by Mohl and Schlechtendal in 1843, and till after 1860 the chief organ for shorter phytotomic communications, was illustrated by a large number of beautiful prints from the establishment of the Berlin lithographer, Schmidt.

1. Development of the Theory of Cell-Formation from 1838 to 1851.

Since we are here dealing with questions of fundamental importance not only to one branch of botanical study but to the whole science of botany, and even to the rest of the natural sciences, it seems imperative that we should follow step by step the founding and perfecting of the theory of the cell, as far as is possible in the limited space at our command; we shall deal with the sexual theory further on in a similar manner.

As usually happens in the inductive sciences, the period of strict inductive investigation into cell-formation was preceded by a still longer time, during which botanists ventured to put forward general theories in reliance on highly imperfect observations. We have already seen how Caspar Friedrich Wolff in 1759 made cells originate as vacuoles in a homogeneous jelly, and how this view was adopted in all essential points by Mirbel at a late period in the 18th century; how Kurt Sprengel, and with him a number of phytotomists, among them Treviranus as late as 1830, supposed cells to be formed from granules and vesicles in the cell-contents, an idea which Link it is true opposed in 1807, but afterwards accepted to a great extent. Though Moldenhawer as early as 1812 ('Beitrage,' p. 70) distinctly rejected these theories, and published observations which if followed up would have led to the right path, yet the botanists above-named and others with them, long continued to adhere to the earlier views. Kieser, for example ('Memoire sur l'organisation des plantes,' 1812) further developed Treviranus' theory, that the fine granules in the latex of plants are cell-germs which are afterwards hatched in the intercellular spaces. Schultz-Schultzenstein in his work 'Die Natur der lebenden Pflanze,' 1823-28, i, p. 607 rejected this view and adopted that of Wolff and Mirbel. Scarcely better than the notion of cell-germs represented by Sprengel, Treviranus, and Kieser was the theory propounded by Karsten soon after 1840; that of the French botanists Raspail and Turpin[1] (1820-1830), though conveyed in a different terminology, corresponded in its main points with the views of Sprengel.

It had been the good fortune of Mirbel at the beginning of the century, and again thirty years later, to promote the advance of phytotomy by means of important observations, though he may have interpreted some of them incorrectly; the same thing happened again thirty years later, and it was a German enquirer, von Mohl, who corrected his observations and views on both occasions.

In his famous treatise on Marchantia polymorpha, which appeared in 1835 in the Memoirs of the French Institute, the first part having been laid before the Paris Academy in 1831-32, Mirbel distinguished three modes of cell-formation; in the germination of the spores of Marchantia new cells are formed from the germ-tube and new cells again from these by a similar process, much in the same way therefore as that which actually occurs in the germination of Yeast-fungi ; he found a second kind of cell-formation in the production of the gemmae of Marchantia, where he distinctly observed the successive appearance of the dividing walls, but formed an erroneous idea of the proceeding on the whole ; in the further development of the gemmae and in other cases of growth he considered that new cells are formed between those that are already present in the manner supposed in his earlier theory.

Von Mohl's dissertation on the multiplication of vegetable cells by division, published in 1835 and reprinted in 'Flora' of 1837, shows how strange these processes even then appeared; in this work he expresses some doubts about Mirbel's statements, but he accepts them on the whole, and only makes incidental mention of his own more numerous and better observations on the development of spores ('Flora,' 1833), though he had there seen several cases of cell-division and free cell-formation with tolerable distinctness. Adolph Brongniart ('Annales des sciences naturelles,' 1827) also had observed, though imperfectly, the formation of pollen-grains in their mother-cells in Cobaea scandens, and Mirbel, in the appendix to the work mentioned above, had given a correct description and good figures of the formation of pollen-cells; and yet von Mohl neglected to compare these important observations of cases of cell-division with his own; even in 1845, when he published the latter in a revised form in his 'Vermischte Schriften,' he overlooked the close relation between the formation of those pollen-grains and spores, and the cell-division in Cladophora. Still this treatise of von Mohl's is of great importance in the history of the theory of cell-formation, because it described a case of cell-division for the first time step by step and brought all the salient points into relief. Dumortier had observed the division of cells as early as 1832[2], and Morren had seen it in Closterium in 1836, but had not given the needful details. Finally, von Mohl applied the experience which he had gained from Cladophora to other filamentous Algae, and pointed out the similarity between these processes and the division of Diatoms, which he consequently claimed as plants in opposition to Ehrenberg, who considered them to be animals ('Flora,' 1836, p. 492).

Meyen next, relying on von Mohl's observations on Cladophora, declared in the second volume of his 'Neues System' that cell-division was a very common occurrence in Algae, Filamentous Fungi and the Characeae, but he neglected any closer investigation of the processes by which the division is introduced and completed. His comparison of these cases of cell-formation with the formation of spores, pollen-grains, and endosperm-cells is moreover noticeable as the first attempt to distinguish what is now known as free cell-formation from cell-division; it was obviously the want of this distinction which long prevented clearer views on the whole of this field of observation. The due separation of these two modes of cell-formation was a short step after the observations that had been already made; and if that step had been taken, Schleiden's theory would have been impossible, and the development of the cell-theory would not have been prejudiced by the mistake, introduced by Schleiden after 1838, of applying the mode of free cell-formation, which he believed he had observed in the embryo-sac of Phanerogams, to the multiplication of vegetative cells in growing organs, and regarding it as the only mode of cell- formation. This would have been the more impossible, since von Mohl in the same year gave an excellent description of the development of stomata by division of a young epidermis-cell and the later separation of the dividing wall into two laminae. But von Mohl in the years immediately following was over-cautious in refraining from all speculative consideration of cases that lay clearly before him, and his views were still undecided in 1845, when Unger and Nägeli had already made good observations on the formation of tissue-cells in growing organs ('Vermischte Schriften,’ 1845, p. 336).

Schleiden's theory of cell-formation arose out of a curious mixing together of obscure observations and preconceived opinions, and reminds us indeed strongly of the old notions of Sprengel and Treviranus; it is true that he distinctly rejected their views, but he too made new cells arise from very minute granules, and his theory like theirs did not rest on any thorough course of observation.

Robert Brown, (see his Miscellaneous Writings, edited by T. T. Bennett, I.) had discovered the nucleus in the cells of the epidermis of Orchidaceous plants in 1831, and had shown that it was very generally present in the tissue-cells of Phanerogams, but had obtained no results from his discovery. The cell-nucleus lay undisturbed, till Schleiden suddenly made it the soul of his theory and the starting-point of all cell-formation. He considered that the nucleus was formed from the mucilaginous content of the cell, which he assumed on insufficient grounds to be of the nature of gum; this he called the cytoblastem, and the nucleus itself the cytoblast. As he states that his cytoblastem becomes yellow and granular in solutions of iodine, we may recognise in it our own protoplasm.

We make acquaintance with Schleiden's theory of cell-formation in its original form, if we turn to his treatise, 'Beitrage zur Phytogenesis,' (in the Archivfiir Anatomic, Physiologic, etc. von Johannes Miiller, 1838). The work begins with some remarks on the general and fundamental laws of human reason, etc., discusses the literature of cell-formation in a few lines without mentioning von Mohl's numerous observations, goes on to mention the general occurrence of the nucleus which here receives its new name, then occupies itself with gum, sugar, and starch, and at last comes to the main subject. There are two spots, says Schleiden, in the plant, where the formation of new organisation may be most easily and most certainly observed, the embryo-sac and the end of the pollen-tube, in the latter of which, according to his theory of fertilisation, the first cells of the embryo are supposed to be formed, but where in fact no cells are formed. At both spots small granules soon arise in the gum-mucilage, which, before homogeneous, now be- comes turbid, and then single larger and more sharply defined granules, the nucleoli, appear. Soon after, the cytoblasts are seen as granular coagulations from the granular mass; they grow considerably in this free condition, but as soon as they have reached their full size, a delicate transparent vesicle is formed upon them; this is the young cell, which at first presents the appearance of a very flat segment of a sphere, whose plane side is formed by the cytoblast, the convex by the young cell (the cell-membrane), which rests upon the cytoblast as a watch-glass on a watch. Gradually the vesicle becomes larger and of firmer consistence, and now the whole of the wall, except where the cytoblast forms part of it, consists of a jelly. By-and-bye the cell grows beyond the edge of the cytoblast and rapidly becomes so large that the latter appears only as a small body inclosed in one of the side walls. The shape of the cell becomes more regular with advancing growth and under the pressure of adjoining cells, and often passes into that of a rhombododecahedron, which Kieser for reasons drawn from the nature-philosophy assumed to be the fundamental form. It is only after the resorption of the cytoblast that the formation of secondary deposits on the inner surface of the cell-wall commences, though some exceptional cases are adduced. Schleiden thinks (p. 148) that he may assume that the process here described is the general law of formation of vegetative cell-tissue in Phanerogams. He adds particularly that the cytoblast can never lie free inside the cell, but is always enclosed in a duplication of the cell-wall, and he thinks that it is an absolute law that every cell, except perhaps in cambium, begins as a minute vesicle, and grows to the size which it reaches in its matured state. The resemblance of this view to that of Sprengel and Treviranus is increased by what we find further on, where we read that from the cell-germs in the spores of Marchantia usually only from two to four serve to form cells, the rest becoming overlaid with chlorophyll, and being consequently withdrawn from the vital process. He who is acquainted with the modern view of the processes of free cell-formation founded on the numerous and careful investigations of later times will scarcely discover in the above account of Schleiden's theory a single correct observation.

Soon after, von Mohl published in 'Linnaea,' 1839, p. 272, his observations on the division of the mother-cells of the spores of Anthoceros; these were carefully made and were correct in all the main points; and in opposition to Mirbel's former statements they establish the fact, that the division is effected by the mucilaginous contents of the cell, and consequently that it is not a passive division of the contents of the mother-cell produced by the growth inwards of projections of the cell-wall.

Unger[3] was the first to declare distinctly against Schleiden's doctrine, and his observations on the punctum vegetationis appeared in the 'Linnaea' of 1841, p. 389; from the size and position of the cells he concluded that the tissue-cells in this case are formed by division, and not in the manner alleged by Schleiden. Soon after Nägeli also ('Linnaea,' 1842, p. 252) observed the processes of cell-formation in the extremities of roots, but he did not conceive them to be cases of division; he saw two nuclei form in each mother-cell, and a new cell form round each nucleus, and explained the origin of the dividing wall as due to the meeting together of the two new cells; he thought that a similar process takes place in stomata and in the mother-cells of pollen; this conception was not absolutely incompatible with Schleiden's theory, but there was this difference, that in Nägeli's case essential processes were correctly observed, but were to some extent incorrectly interpreted. In the same year appeared the first edition of Schleiden's 'Grundzüge der wissenschaftlichen Botanik,' in which his theory of cell-formation was repeated in a more precise form. That he was thoroughly in earnest to maintain it is shown by the fact that he gave still another exposition of it in his 'Beiträge zur Botanik' in 1844, where he insists that his method of cell-formation is the general one, though it has been distinctly ascertained in the Phanerogams only. But how completely an observer may be led captive by a preconceived opinion may be learnt from Schleiden's suggestion, that the formation of zygospores in Spirogyra is in accordance with his views, though it is impossible to conceive of a case of cell-formation more easy to observe, or less reconcilable with Schleiden's theory. It was mentioned in the first book, that Hedwig and Vaucher were acquainted with the remarkable process of the formation of zygospores in the alga-genus Spirogyra; but this as late as Schleiden's time was not regarded as an example of cell-formation, and his view was really a step in advance, since it brought a process, so highly peculiar according to existing ideas, under the general conception of cell-formation.

The systematic elaboration of the theory of cells, founded on careful observation and mature reflection, began with the year 1844. Almost at the same time in this year appeared Nägeli's detailed enquiries into the occurrence of the cell-nucleus and into cell-division, von Mohl's observations on the primordial utricle and its behaviour in the process of cell-division in young tissue, and lastly those of Unger on merismatic cell-formation (cell-division) as a general mode of proceeding in the growth of organs. As these observers were chiefly concerned to test the correctness and general applicability of Schleiden's theory, they necessarily paid special attention to the general occurrence of the cell-nucleus and to its position on the side of the cell-wall, for these were the points most accessible to observation and criticism. The discussion of these observations disclosed a defect in the current phraseology, in which the word cell was commonly understood to mean only the cell-membrane, but sometimes included everything belonging to and contained in the cell; hitherto moreover the protoplasm of the cell had not been sufficiently distinguished from the rest of the cell-contents.

Nägeli and von Mohl arrived simultaneously at a clearer understanding of these points; von Mohl recognised the primordial utricle (1844) as a component part of the cell-contents and not belonging to the cell-wall, and explained the part which it plays in cell-division; in 1846 he arrived at a clear conception of the protoplasm as a peculiar substance distinct from the other contents of the cell and gave it the name it still bears. Meanwhile Nägeli had also distinguished the protoplasm from everything else in the cell, and noticed its pre-eminent importance in cell-formation and its nitrogenous character.

We must not omit to mention here, that investigations into the processes of cell-formation compelled observers to search for the spots where cell-formation actually takes place, and thus the fact was ascertained, that cells in statu nascendi are not to be found in all parts, not even in all growing parts of the plant, but that we must look for them in the so-called puncta vegetationis in the stem and root, in the youngest lateral organs, and between the bark and the wood in woody plants. About this time a new idea began to be attached to the word cambium, which Mirbel had used in the sense of a nourishing juice saturating the plant; it was now applied to the tissue-masses in which the formation of new cells takes place, and specially to the very thin layer of tissue lying between the wood and the rind, from which new layers of wood and rind in woody plants are formed a layer, which according to Mirbel's theory had been a mass of sappy matter, in which new cells arise as vacuoles.

Unger in an enquiry into the growth of internodes ('Botanische Zeitung,' 1844) again declared himself as an opponent of Schleiden's theory. He maintained first of all and erroneously that the cell-nucleus is not of general occurrence in tissue where division is taking place, but he argued rightly from the position of the cells, from the difference of thickness in their walls, and from their relative size, in favour of their multiplication by the formation of dividing walls; he noticed the part played by the cell-contents in the multiplication of cells in hairs, and asserted that merismatic cell-formation (cell-division) is the general rule in the growth of organs of vegetation, while he distinctly declared that it was not possible to bring all that is actually seen at the spots where formation of cellular tissue is taking place into agreement with Schleiden's theory. But Unger did not observe the processes that take place in cell division step by step; his observations sufficed to make Schleiden's theory very improbable without offering enough foundation for a new one, and Schleiden did not fail to reply to Unger's objections in the second edition of his 'Grundzüge' in 1845.

Earlier in the same year, von Mohl published in the 'Botanische Zeitung' the treatise on the primordial utricle which has been already mentioned ; by the term primordial utricle he meant partly the very thin layer of protoplasm, which in large cells full of sap lines the inside of the cell-wall, and partly an outer layer of the protoplasm in young cells, which are still rich in that substance. It is true that the distinguishing the primordial utricle was not a very important matter ; but von Mohl applied it with his usual thoroughness to obtaining a better insight into cell-formation by calling attention (p. 289) to the circumstance, that the cells of the cambium-layer between the rind and the wood fit into one another and leave no intercellular spaces; from this he concluded that there are only, two possible modifications of cell-multiplication, either division of cells by formation of a dividing wall or formation of cells within cells; in each of these young cells is a primordial utricle, the origin of which must at least be contemporary with that of the cell (cell-membrane). 'Could it then be distinctly shown, that two primordial utricles exist side by side in cells, which are in the act of multiplying, before a partition-wall is formed between them, it would be evident that in the cambium layer and at the points of the stem and root the formation of the primordial utricle precedes that of the cell.' Von Mohl believed that he had seen this process, but was not perfectly satisfied as to the correctness of his observation; but he continues: 'Since every young cell contains a primordial utricle, this must either be absorbed before a multiplication of the cell commences in order to make way for two new ones formed in its stead, or the old primordial utricle must separate into two.' He considered the first supposition fo be the probable one, rejecting Unger's statement that the nuclei are formed after the division. It is surprising that after these considerations von Mohl thought that his own observations necessarily confirmed Schleiden's theory of cell-formation, although he noticed beside that the nucleus never forms a part of the cell-wall, an essential feature in that theory ; but in fact von Mohl took the membrane which according to Schleiden separates from the nucleus for the primordial utricle. But these mistakes are soon followed by the right conjecture, that the substance of the primordial utricle may be identical with the mucilaginous mass, which commonly encloses the nucleus, and so with that which von Mohl two years later named protoplasm. In this later treatise ('Botanische Zeitung,' 1846), in which he proves that the well-known movements in the interior of cells are made not by the watery cell-sap but by the protoplasm, he states (p. 75) that it is the protoplasm which produces the nucleus, that the organisation of the nucleus ushers in the formation of the new cell, and that contrary to Schleiden's theory the protoplasm completely envelopes the nucleus, which always occupies the centre of very young cells, as is the case especially in the endosperm-cells observed by Schleiden. He then shows how the protoplasm of young cells at first solid afterwards forms sap-cavities and stretches between them in walls, bands or threads, the substance of which exhibits the streaming movement. Von Mohl strangely neglected on this occasion to compare carefully his former observations on the origin of spores and the division of Alga-cells with his new results, and to seek for the essential resemblances between them ; on the contrary he said emphatically that the cell-division in Cladophora is probably a quite different process from the multiplication of tissue-cells in higher plants.

The discoveries of Unger and von Mohl up to the year 1846 were quite sufficient to refute Schleiden's theory, but not to give a clear and general view of the processes in the formation of cells; the different kinds of cell-formation were neither carefully distinguished from one another, nor could they be

referred to a common principle. Both observers had endeavoured to conjecture the course of events from certain data, supplying by inference what they had not directly observed.

Nägeli about the same time took up a different position as an opponent of Schleiden's theory. In an exhaustive treatise on the cell-nucleus, cell-formation, and cell-growth in plants, the first part of which appeared in 1844 in the periodical founded by himself and Schleiden, he collected together all that had hitherto been observed by himself and others from various points of view. All sections of the vegetable kingdom were once more systematically examined with reference to the occurrence of the cell-nucleus and the different kinds of cell-formation; all cases of the latter were carefully compared together in their resemblances and differences, in order to deduce from the observed phenomena that which was essential and universal. The first result was, that Schleiden found himself obliged, in the second edition of his 'Grundzüge' in 1845, to accept the cell-division established by Nägeli in Algae and the mother-cells of pollen as a second kind of cell-formation; thus began the movement in retreat which was destined to end in the following year with the overthrow of Schleiden's theory. This was effected by the continuation of Nägeli's treatise in the third volume of the periodical for 1846. In the first part of his work Nägeli had set out by assuming the correctness of Schleiden's assertions, though he was even then compelled to modify them considerably. In the second part, however, in consequence of further observations Schleiden's theory was declared in plain terms to be utterly incorrect, and was refuted point by point. But Nägeli was not obliged to confine himself to this negative result; his comprehensive investigations supplied material at the same time for constructing a new theory of cell-formation, which not only took in all the various cases, but declared the principle which lay at the root of all. If we compare this second part of Nägeli's treatise with von Mohl's publications from 1833 to 1846, we shall see that von Mohl had observed with accuracy a number of important facts, but that Nägeli added largely to them, and, which is the main point, elaborated them into a comprehensive theory embracing all kinds of cell-formation. How important the correct distinction of the protoplasm from the rest of the cell-contents was for the perfecting of the theory of cells is seen from Nägeli's declaration, that he retracts his former view which rested on the authority of Schleiden, because it sprang from a time when he was ignorant of the significance of the mucilage-layer (the protoplasm), though it is true that he indicates at the same time other points and new considerations which definitively set aside Schleiden's theory. After investigating the different modes of free cell-formation and finding the processes there quite different from Schleiden's account of them, he proceeded to search for free cell-formation where Schleiden had affirmed that it invariably occurs, namely in growing vegetative organs in the higher plants. But this investigation led him to the conclusion that all vegetative cell-formation is true cell-division, and that even the reproductive cell-formation in some Algae and Fungi is effected by division; the reproductive cells of most plants are the result of free cell-formation, but it should be observed that the term free cell-formation is here used not exactly in the modern sense, inasmuch as Nägeli included in it the formation of four-fold grains (tetrads) in spores and pollen. If the distinction between cell-division and free cell-formation had often been suggested by former observers, Nägeli was the first who distinctly defined it, though not exactly as it is now defined. ' In cell-division the contents of the mother-cell separate into two or more portions; a perfect membrane forms round each of these portions, which at the moment of its appearance rests partly on the wall of the mother-cell and partly on the adjacent walls of the sister-cells. In free cell- formation a smaller or larger part of the contents of a cell, or even the whole of them becomes isolated. On its surface is formed a perfect membrane, which is everywhere free on its outer face. There are two processes in the formation of a cell; the first is the isolation or individualising of a part of the contents of the mother-cell, the second the formation of a membrane round the individualised portion.' He then proceeds to show that the cell-wall is formed by the separation of non-nitrogenous molecules from the nitrogenous mucilage (proto-plasm). These sentences contain all that is general and essential in vegetative cell-formation. Further on he notices the peculiarities in the various processes in cell-formation; he says that the individualising of the cell-contents assumes four forms; first, single small portions of the contents separate themselves inside the rest, as occurs in the formation of free germ-cells in Algae, Fungi, and Lichens, and of endosperm-cells in Phanerogams; secondly, the whole contents of one cell, or of two by conjugation of associated cells, collect into a free spherical or ellipsoidal mass, as in the formation of germ-cells in the Conjugatae; thirdly, the whole contents of a cell separate into two or more portions, which is now called cell-division; from this Nägeli distinguishes as his fourth form, the process known as abscision (Abschniirung), which occurs in the formation of germ-cells in many Algae and Fungi.

Schleiden had declared it to be a general law in plants, that cells are only formed inside mother-cells. Meyen however, Endlicher, and Unger, had recently assumed the formation of new cells between the older ones; Nägeli maintained that all normal cell-formation, vegetative and reproductive, takes place only within mother-cells.

In opposition to the long-cherished notion that there must be one general and fundamental form of cell, Nägeli pointed to the fact that cells have very different forms at the moment of their production. Those which arise by free cell-formation are, he says, at first always spherical or ellipsoidal; those produced by cell-division have a shape necessarily conditioned by the form of the mother-cell and the manner of division. He showed further that changes in the shape of cells with advancing growth depend materially on whether they enlarge equally in all parts of their circumference or not. These considerations, obvious as they are, were now for the first time pointed out and fully appreciated.

The reader who is already familiar with our subject will recognise in the passages adduced from Nägeli without further explanation the essential principles of the modern theory of cells, especially if he compares them with the views propounded at the same time and previously by Schleiden, Unger, and von Mohl. But, as might be expected, the further investigations, which were pursued with zeal during the succeeding twenty years and produced a considerable literature, did much to enlarge and perfect Nägeli's theory in many of its details and to correct it in some minor points; the theory itself facilitated this process by supplying a scheme to which the investigation of special questions could readily be referred. Whether the nucleus is a solid body or a vesicle, whether in the division of a mother-cell into compartments the wall of partition always grows from without inwards or is formed simultaneously over its whole surface, whether it is originally composed of two laminae or of one which is afterwards differentiated, these and many other questions were decided in course of time.

Schleiden's theory was now definitively set aside, a deeper insight was obtained into the nature of the cell, and the ideas connected with the word became broader and more profound. The knowledge of the formation of cells showed that the cell-walls, which had been hitherto regarded as the important part, are only secondary products, that the true living body of the cell is represented by its contents and especially by the protoplasm. Alexander Braun, relying on numerous researches into the lower Algae, expressed himself in 1850 ('Verjüngung,' p. 244) to the effect that it is an inconvenience that the word cell is used at one time to designate the cell with its wall, at another time the cell without its wall, or again the wall without the cell. Since the contents are the essential part of the cell and form a separate and individual whole which has its own membrane-like boundary, the primordial utricle, before the secretion of the membrane of cellulose, we must either confine the term cell to the enveloping membrane or to the chamber which it forms and find another name for the body of the contents, or else call this the true and proper cell. This, which presents itself at once as the correct mode of conception to anyone who observes the formation of swarm-spores in Algae and Fungi and many other cases of cell-formation, was from this time forward a vital point in the doctrine of the cell. Braun contributed also to the clearing up of the ideas of botanists on this subject by bringing together under one systematic view and classifying all the varieties of cell-formation which were known to him up to the year 1850, and especially by a more searching investigation into modes of conjugation. Henfrey's contributions ('Flora' of 1846 and 1847) rested entirely on the observations of German botanists, and brought to light nothing that was independently and essentially new. On the other hand Hofmeister's new observations on the development of pollen (1848), and his many remarks on cell-formation in his epoch-making researches into embryology in 1851, contributed repeatedly to the deciding of doubtful points, especially in the behaviour of the nucleus in cell-formation and the production of the dividing walls. Von Mohl, who in spite of his own excellent observations maintained up to 1846 a somewhat undecided attitude of mind in respect to Schleiden's theory, which was at that time still in vogue, published in 1851, in his treatise 'Die vegetabilische Zelle,' an excellent summary of the results which had been so far achieved. In describing cell-division he notices specially that the new nuclei occupy the centres of the future daughter-cells before the division of the contents commences; but he still clung to his old view, that in every instance of cell-division the parting-wall must form progressively from without inwards, as in Cladophora, contrary to Nägeli's and Hofmeister's correct statements, that cases also occur of simultaneous formation at every point of the surface of the partition-wall. As usual, however, von Mohl rested his opposition on a good observation, and showed that in the case of the formation of pollen in dicotyledonous plants it is possible to burst the membrane of a mother-cell in the act of dividing, and set free the protoplasm when it is already deeply divided into the four parts, and so to see the half-formed partition-walls; but this only proved that such was the process in the cases observed, the formation of the partition-walls being simultaneous in others. It may be mentioned in this place, that the idea of special mother-cells in the formation of pollen introduced by Nägeli in 1842 was in entire accordance with the condition of the science at the time, since he meant by the term the laminae of membrane formed during the successive divisions of the mother-cell. To call these still special mother-cells, as some modern phytotomists do, is quite unjustifiable, because since 1846, when Nägeli propounded his theory, the word cell, as we have seen, no longer designated the mere membrane but the whole body of the cell, while the expression special mother-cell rests on the older phraseology, in which cell and cell-membrane are identical.

The additions made to the doctrine of cell-formation during the greater part of the twenty years after 1851 were unimportant in comparison with the mighty development which it had experienced during the preceding ten years. These years had indeed been marked by the greatest possible activity and fruitfulness in results in all parts of botanical study. By the labours of Unger, von Mohl, Nageli, Braun, and Hofmeister, not only were the foundations laid for a true theory of cells, but the details were worked out, and the conceptions connected with them finally cleared up. Text books could now disseminate the new teaching through wider circles, and with these works may be classed von Mohl's treatise already mentioned on the vegetable cell, since it came much into use in a later and special edition, and was made by many teachers of botany the foundation and guide in their lectures. It was now become the fashion to compose not general text-books of botany, but compendia of anatomy and physiology, and thus morphology and systematic botany were neglected, as anatomy and physiology had been in the period immediately preceding Schleiden's time. Whoever therefore wished to consult a complete manual of general botany was for some time obliged to be content with Schleiden's 'Grundzüge'; and this had a great deal to do with keeping alive his erroneous doctrines on cells and fertilisation among general readers, while the professed botanists had long given in their adherence to more modern and more correct views. It is a misfortune in our science to be singularly poor in good text-books, which might have given a general account from time to time of the existing condition of research ; this is one of the reasons why for some time past even official representatives of botanical science often differ so much from one another in their fundamental views on method, and on the question of how much has been actually established and how much still remains doubtful in the main divisions of the subject, that a mutual understanding seems often impossible. That a better state of things in this respect prevails in zoology, physics, and chemistry, is certainly not a little due to the many good compendia and text-books, which endeavour to give some account of the progress of those sciences from year to year.

However, during the period from 1850 to 1870 Schacht and Unger attempted to make the results of modern phytotomic investigation accessible to general readers by means of text-books. Such was the nature of Schacht’s[4] work, 'Die Pflanzenzelle,' published in 1852, a book which claimed to expound all parts of phytotomy by the aid of the author's own observations, with occasional reference only to the writings of others; the attempt was so far impossible, as the essential points had already been fully cleared up by the labours of other botanists. The work had however the advantage of attracting the attention of the reader by numerous good original drawings, and the style was enlivened by the constant appeal to original observation; at the same time, through insufficient use of the available literature, the author's views not unfrequently fell short of the existing standard of knowledge. Worse than this however was a certain defect of education, which led the writer into self-contradiction and to incorrect classification of his facts; things fundamentally important were sometimes neglected for unimportant details, and a certain unreflecting empiricism was apparent in the whole work, in marked contrast with the logical exactness of von Mohl, Nageli, and Hofmeister. In the second edition of the work, published in 1856 under the title, 'Lehrbuch der Anatomic und Physiologic der Gewachse,' we find many improvements in the details, but still on the whole the same formal defects. It is not unimportant in a historical point of view to notice this character of Schacht's writings, because during this period most young botanists and other persons also derived their knowledge of phytotomy and of the nature of cells chiefly from him; his books did not truly represent the condition of the science; their defective reasoning had an injurious effect on the minds of younger readers, and they introduced into phytotomy and vegetable physiology a habit of accumulating a mass of undigested facts, such as has for some time marked the condition of morphology and systematic botany.

Unger's text-book 'Anatomic und Physiologic der Pflanzen ' (1855) was superior in conception and execution. It introduced the beginner to the doctrine of cells with careful attention to all that was known on the subject, if sometimes

with some hastiness of decision, while it brought the really important points everywhere into prominence and employed individual facts to explain the general propositions, as should always be done in a work intended for learners. But in addition to this Unger's book contained much that was really new and valuable, and among other things some very important remarks on the physiological characteristics of protoplasm; and it pointed out for the first time the similarity between vegetable protoplasm and the sarcode in Rhizopods, which Max Schulze had before carefully described. In this year Nägeli also published investigations into the primordial utricle and the formation of swarmspores in his 'Pflanzenphysiologische Untersuchungen,' Heft I, which gave a new insight into the physical and physiological characteristics of protoplasm. It has been mentioned above that De Bary's investigations into the Myxomycetes in 1859 had thrown new light on the subject of protoplasm, and had called attention to vital phenomena connected with it, which, though analogous to what had been before observed, were rendered very striking from the circumstance that in this case the protoplasm was not in microscopically small portions enclosed by firm cell-walls, but moved about and showed changes of shape in large, sometimes in very large, masses, that were entirely free and unconfined. Here was the best opportunity for making a nearer acquaintance with protoplasm and for learning to recognise it as the immediate support of all vegetable and animal life; in succeeding years the zootomists and physiologists Max Schulze, Briicke, Kiihne, and others established the fact that the substance which lies at the foundation of cell-formation in animals agrees in its most important characteristics with the protoplasm of vegetable cells. A more detailed account of modern researches on this subject, which would moreover involve the examination of Hofmeister's work of 1867, 'Die Lehre von der Pflanzenzelle,' does not fall within the limits of our history.

2. Further Development of Opinion on the Nature of the Solid Framework of Cell-Membrane in Plants after 1845.

Between 1840 and 1850 the most eminent representatives of phytotomy were chiefly engaged, as we have seen, in observing the formation of vegetable cells, and in framing the true theory of the subject by process of induction. It was not to be expected that, while these labours were bringing year by year new things to light and keeping opinion on the formation of cells in a constant state of fluctuation, their results would lead to very important changes in the theory of the solid framework of cell-membrane founded by von Mohl. On the contrary, it was at this time that his views such as we have seen them on the connection of cells one with another, on the configuration of their partition-walls and on their growth in thickness, attained their greatest influence. His theory seemed to stand firm and complete when contrasted with the unsettled state of opinion respecting the origin of cells, and the question, how far it could be made to agree with the new observations on the history of cell-formation, was hardly raised. In the midst of the strife of opinion on the latter subject appeared von Mohl's 'Vermischte Schriften' in 1845, in which his views on the structure of mature vegetable tissue were produced in a series of monographs as the apparently irrefragable result of his observations. And in fact phytotomic research up to 1860 followed the train of thought initiated by von Mohl, till at last the inadequacy of his views was rendered apparent between 1858 and 1863 by Nageli's new theory of growth by intussusception, and by the profounder insight obtained into the nature of cell-formation.

A sufficient proof of the correctness of these remarks is to be found in the further development of the views of botanists on the intercellular substance and the cuticle, which might have adapted themselves before 1850 to the new theory of cells, but instead of doing so were moulded by the ideas current before 1845. It has been shown in the preceding chapter how von Mohl gradually restricted the theory of intercellular substance which he had proposed in 1836, and had come in 1850 to regard this substance as only a cement which might in many cases be perceived between the cell-walls. It should be added here, that Schleiden in connection with his theory of cells considered both the intercellular substance and the cuticle to be supplementary secretions from the cells, and made the former fill the intercellular spaces, just as laticiferous and resiniferous passages are filled with secretions from the adjacent cells (1845). Unger too in 1855 ('Anatomic und Physiologic der Pflanzen') thought the existence of a cement between the cells necessary to prevent their falling asunder. Schacht, who in his 'Pflanzenzelle' of 1852 had followed Schleiden in explaining the intercellular substance and the cuticle as secretions or excreta from the cells of the plant, still kept on the whole to this view in 1858, though he modified it in some important points. This theory of Schleiden and Schacht was first opposed by Wigand in a series of essays (1850-1861), in which in strict adherence to von Mohl's theory of apposition he sought to prove, that the layers which are visible in wood-cells as intermediate laminae in the partition-walls, and which till then had been regarded as a cement between contiguous cells, an intercellular substance, were nothing else than the thin primary membranous laminae formed in the process of cell-division, and subjected to subsequent chemical change, while the secondary layers of thickening in von Mohl's sense lie on both sides of them. The cuticle on the epidermis was explained in a corresponding manner. Though Sanio in 1863 raised a variety of objections to Wigand's view, he still adhered to it in principle, and found a strong confirmation of it in the fact, that he succeeded in producing the well-known cellulose-reaction in the intercellular substance of wood-cells when freed from foreign admixtures.

The researches of Wigand and Sanio were sufficient to over throw von Mohl's account of the intercellular substance and the cuticle, but they had not proved that the intermediate laminae are in fact the primary partition- walls on which von Mohl's secondary thickening-layers had been deposited, on both sides in the case of the intercellular substance, on one side in that of the cuticle. The structure of the partition-walls and the existence of the cuticle could be explained in a totally different way from the point of view now opened by Nägeli's theory of intussusception; there was no need now to see either a secretion or a primary cell-wall in the intermediate lamina of thickened cells or in the cuticle, for it was possible that this lamination might be due to subsequent chemical and physical differentiation of membranes thickened by intussusception. As phytotomists are not yet quite agreed as to the correctness of this view, we must be content with observing here that in the matter of the cuticle and the intercellular substance lies one of the points, the determination of which will involve the question of von Mohl's earlier theory of apposition. It is not the purpose of this history to give the more modern views that have asserted themselves since 1860, especially where the question is still in debate.

It was a part of von Mohl's idea of the cell-tissue and one to which he had firmly adhered since 1828, that except in the cross walls of genuine wood-vessels and some very isolated cases the partition-walls in cellular tissue are never perforated; that both simple and bordered pits always remain closed by the very thin primary lamina of cellulose. But between 1850 and 1860 several cases were discovered which were at once exceptions to von Mohl's rule, and of great importance to physiology. Theodor Hartig, in his 'Naturgeschichte der forstlichen Kulturpflanzen Deutschlands' (1851), described peculiar rows of cells in the bast-system, in which the transverse and sometimes the longitudinal walls appear to be pierced like a sieve by numerous minute holes, and to these cells he gave the name of sieve-tubes. Von Mohl (1855), while in other points confirming and extending Hartig's discovery, declared against the perforation of the walls, believing that the appearances were due to lattice-like thickenings of the cell-walls; he proposed therefore to call Hartig's sieve-tubes latticed cells. Then Nngeli showed in 1861 that in some cases at least there can be no doubt that the walls are actually perforated, and that the sieve-plates serve for the passage of mucilaginous matter in bast-tissue, and the author of this history, it may be remarked in passing in 1863, and Hanstein in 1864, suggested means by which it may be ascertained with certainty that Hartig's sieve-plates are perforated. Meanwhile a number of laticiferous organs had been recognised as forms of vessels in von Mohl's sense, and it was found that such canals are produced by dissolution of the septa of adjacent cells. But the knowledge of the laticiferous organs continued till towards 1865 to be very unsettled and defective, and the examination of resin-passages, and the discovery that they are formed by simple parting of cells from one another, belong to modern phytotomy; Hanstein, Dippel, N. J. C. Miiller, Frank, and others have since 1860 enlarged our knowledge of these forms of tissue. Schacht in 1860 established one of the most important exceptions to von Mohl's view above-mentioned, by demonstrating the formation and true form of bordered pits in the wood of Conifers and in dotted vessels in Angiosperms from the history of their development, and by showing moreover that in all cases where bordered pits are formed on both sides of a partition-wall and the adjacent cells afterwards convey air, there the original very thin partition-wall in the bordered pit disappears, and that consequently in such cases the bordered pits represent so many open holes, through which adjacent cells and vessels communicate. At the same time another hitherto inexplicable phenomenon received its explanation. Malpighi, and after him the phytotomists at the beginning of the present century had remarked, that the large vessels in the wood are not unfrequently filled with parenchymatous cell-tissue, for the origin of which no one could account. The phenomenon, however, could now be explained quite simply after Schacht's discovery ; the formation of thylosis in vessels only takes place when these border on closed parenchyma-cells in the wood; when this is the case, the very thin membrane which separates the bordered pits from the contiguous cells is not absorbed, but it bulges inwards into the cavity of the vessel under the pressure of the sap of the neighbouring parenchyma-cell, there swells up like a bladder, and may by the formation of partition- walls give rise to parenchymatous tissue; this, if proceeding from a number of pits, fills up the cavity of the vessel.

3. History of Development and Classification of Tissues.

It has been already stated, that the first step to a real understanding of the structure as a whole of the higher plants was made by Moldenhawer, who beginning with the study of the Monocotyledons, first formed an idea of the vascular bundles as a distinct whole, a system composed of various forms of tissue, and applied this idea to explain the construction of the stems of Dicotyledons, upsetting thereby Malpighi's earlier theory of the growth in thickness of stems. It was also observed, that von Mohl, advancing further in the same direction, gave a more exact description of the epidermis and of the tissues connected with it, and classified them, that is, introduced a terminology founded on real investigation, but did not succeed in bringing the subject to an entirely satisfactory conclusion; this could in fact be reached only by the study of the history of development, the only decisive method of investigation, whether the object be to determine the true nature of cells and their subordinate forms, or the solid fabric of vegetable structure, or as in the present case to distinguish and classify forms of tissue ; it is this method which supplies the morphological points of view necessary for the understanding of the inner structure of the plant by investigating tissues in those states of development, in which they are not yet adapted to subsequent physiological functions. The combination of morphological and physiological points of view in the determination of facts has maintained itself longer in this part of botanical study than in any other ; but here too ideas and opinions were gradually sifted and cleared up under the influence of the modern study of the history of development, though it was not till after 1850 that the determination of the chief points in the theory of cell-formation left the leading phytotomists at liberty to devote themselves to histological questions.

How little advance had been made towards the true understanding of the varieties of forms of tissue in the higher plants before 1850 is shown, for instance, by Schleiden's account of tissues on page 232 of his 'Grundziige' of 1845, where parenchyma, intercellular substance, vessels, vascular bundles, bast-tissue, bast-cells in Apocyneae and Asclepiadeae, laticiferous vessels, felted tissue, epidermal tissue, are discussed in this succession in co-ordinated sections of the text. It is obvious that no well-ordered view of the whole cellular structure of a plant of the higher order could be obtained in this way. Further on in the same work, where Schleiden attempts a classification of vascular bundles, which he distinguishes into closed and open, and assigns the latter to Dicotyledons, we find the cambium-layer named as the outer boundary of these open vascular bundles ; the bast which lies outside the cambium was therefore not considered to be a part of the open vascular bundles, and this necessarily excluded any profitable comparison of the circumstances in Monocotyledons and Dicotyledons. The case is still worse in many respects in Schacht's work already mentioned, 'Die Pflanzenzelle' of 1852, where under the heading 'Kinds of vegetable cells' the histology is discussed in the following co-ordinated sections; the swarm-filaments of Cryptogams, the spores of the same, pollen-grains, cells and tissue of Fungi and Lichens, cells and tissue of Algae, parenchyma and its cells, vessels of the plant, wood and its cells, bast-cells, stomata, appendicular organs of the epidermis, cork ; then follows a paragraph on the thickening-ring, and then to the no small astonishment of the reader comes an account of the vascular bundles, after the vessels, the wood, and the bast-cells have been already dismissed. That such a mode of presenting the subject is due to the little insight possessed by the writer into the structure of the plant as a whole is apparent from simply reading the book, and a similar confusion of ideas is found in his text-book of 1856.

We find a much better classification of tissues in 1855 in Unger's 'Anatomic und Physiologic der Pflanzen'; an account of cells is followed by a description of cell-complexes, as one of the chief divisions of the book, and herein of cell-families, cell-tissues, and cell-fusions. Another chief section is occupied with cell-groups, and here epidermal formations, air-spaces, sap-receptacles, glands and vascular bundles are noticed; here certainly the fact has been overlooked that vascular bundles may be co-ordinated with epidermal formations, but not air-spaces, sap-receptacles and glands. His last chief division gives an account of tissue-systems and of the way in which the vascular bundles are united together in different plants, and secondary growth in thickness and the activity of the cambium-layer are described quite in the right connection.

In this branch of the science, as in every case where it is a question of establishing fundamental conceptions, of surveying facts from extensive points of view, and of seeking the requisite principles by means of the history of development, we find that it is Nägeli who opens the way and lays the foundation. In his 'Beitrage zur wissenschaftlichen Botanik' of 1858, he proposed a classification of tissues from purely morphological points of view. His first division was into generating and permanent tissue; in each section he distinguished two forms, prosenchymatous and parenchymatous tissue. Parenchymatous generating tissue, the original component of every young organ, he named primary meristem as distinguished from prosenchymatous generating tissue, which is differentiated in the form of strands and layers, and received from him the general name of cambium; this was certainly not a happy distinction, because Nägeli's cambium by no means consists entirely of prosenchymatous tissue. By the term secondary meristem Nägeli designated the tissue-strands and tissue-layers which are formed between the permanent tissue of older parts. The cambium he regards as the first product of the primary meristem. The second chief form, permanent tissue, he divides into two classes, not according to the form of the cells or physiological relations, but according to its origin ; all permanent tissue, which is derived immediately from primary meristem, is protenchyma, all that comes directly or indirectly from cambium is epenchyma. And since the tissue-strands, till then known as vascular bundles, do not contain vessels only but always fibrous elements also, as Bernhardi had shown in 1805, Nägeli thought that they should therefore be called fibrovascular strands. If it cannot be denied that the obvious distinction between epidermal and other tissue did not find suitable expression in this classification, and though other points of view may at the present day be proposed for the genetic arrangement of tissues, yet Nägeli's classification and terminology have the merit of having for the first time exhibited the general histology of plants on comprehensive and genetic principles. It contributed materially to impart a better under- standing of the collective structure of plants.

The vascular bundles or fibrovascular strands especially demanded further investigation of the genetic and morphological kind; for a correct insight into the origin and subsequent transformation of this tissue-system is as important for phytotomy as a similar knowledge with respect to the bony system in vertebrate animals is for zootomy. But a knowledge of the vascular bundles and their course in the stem has a special im portance in phytotomy, because it is the only way to the understanding of secondary growth in thickness in true woody plants. It was noticed above, that von Mohl had proved in 1831 the separate character of the bundles which begin in the stem and bend outwards into the leaves where they end, so that the entire system of bundles in a plant consists of single bundles isolated when formed and subsequently brought into connection with one another. Nägeli had already examined the corresponding circumstances in the vascular Cryptogams in 1846, when Schacht took the retrograde step of making the vascular system in the plant originate in repeated branching, instead of in subsequent blending of isolated strands ; Mohl declared unhesitatingly against this mistake in 1858, but it was refuted at greater length and still more clearly by Johannes Hanstein in 1857, and by Nägeli in 1858. Hanstein in a treatise on the structure of the ring of wood in Dicotyledons confirmed Nägeli's previous statements, and proved in the case of Dicotyledons and Conifers that the first woody circle in the stem is formed from a number of vascular bundles, which are identical with those of the leaves and originate in the primary meristem of the bud. These primordial bundles pass downwards through a certain number of internodes in the stem independent and separate, and either retain their isolation to the point where they end below or unite with adjacent bundles which originated lower down. Hanstein happily termed the portions of the vascular bundles, which enter the stem from the base of the leaf and traverse a certain portion of it in a downward direction, leaf-traces, so that it may be stated briefly, that the primary wood-cylinder in Dicotyledons and Conifers consists of the sum of the leaf-traces. Nägeli's observations were of a more comprehensive character, and supplied, as we have seen, a terminology for tissues. He distinguished three kinds of vascular bundles according to their course; the common bundles, which represent Hanstein's leaf-traces in the stem, and whose upper ends bend outwards into the leaves the cauline bundles, which extend above to the punctum vegetationis of the stem without bending outwards into leaves; and leaf-bundles, which belong to the leaves only. He laid it down as a general rule as regards the common bundles in Dicotyledons and Conifers that they begin to form where their ascending and descending halves meet, at the spot therefore where they bend outwards into the leaf, and continue to form as they descend into the stem and ascend into the leaf by differentiation of suitable tissue. It follows from the nature of these common bundles, that a more thorough understanding of their course and origin presupposes a more accurate knowledge of the order of formation of the leaves at the end of the stem and of the changes in the phyllotaxis during growth; these relations Nägeli took into detailed consideration, and even derived from them new points of view for the examination of the genetic arrangement of leaves, pointing out at the same time the unsatisfactory nature of the principles of the doctrine propounded by Schimper and Braun. Nägeli was also the first who compared the anatomical structure of roots with that of stems, and drew attention to the peculiar character of the fibrovascular body in these organs. As his previous discovery of the apical cell and its segmentation promoted further research, so now his treatise on fibrovascular strands called forth many others from various quarters; among them that of Carl Sanio on the composition of the wood ('Botanische Zeitung,' 1863) must be mentioned as one of the first and most important, and as serving in conjunction with the works of Hanstein and Nägeli to throw light upon the processes of growth in thickness of stems. It has been already said that neither von Mohl nor Schleiden, neither Schacht nor Unger succeeded in finding the true explanation of growth in thickness. It was impossible that they should do so, for they were insufficiently acquainted with the origin, true course, and composition of the vascular bundles before growth in thickness commences; the study of the subject was greatly perplexed by the confounding together in thought and language of totally different things which came under consideration, the so-called thickening-ring, in which the first vascular bundles were supposed to originate close under the summit of the stem, being confounded with the cambium of true woody plants which is formed at a much later period, and both of them again with the very late-formed meristem-layer in arborescent Liliaceae, in which new vascular bundles are continually being produced and cause a peculiar enlargement of the stem[5]. Sanio's treatise first removed this confusion of ideas, which appears in von Mohl himself to some extent even in 1858, by sharply distinguishing the thickening-ring beneath the point of the stem, in which the vascular bundles begin to be formed, from the true cambium, which is formed at a later time in and between the vascular bundles, and produces the secondary layers of wood and rind; Sanio also occupied himself with submitting the various elements of the wood to a more careful examination, and with giving them a better classification and terminology. The peculiar instance of secondary growth in thickness in the arborescent Liliaceae, which had long been known and had helped to mislead von Mohl and Schacht, was fully explained for the first time by A. Millardet in 1865. The later works of Nägeli, Radlkofer, Eichler and others on abnormal wood-formations contributed materially to enlarge the knowledge of normal growth also; but these coming after 1860, and Hanstein's later investigations into the differentiation of tissues at the end of the stem in Phanerogams, do not fall within the limits of our history.

4. Nageli's Theory of Molecular Structure and of Growth by Intussusception.

This theory, the importance of which to the further development of phytotomy and vegetable physiology has been already pointed out, will form the conclusion of our history of the anatomy of plants. It was a remarkable coincidence that this molecular theory of organic forms, which is not without results for zootomy also, was brought to completion at about the same time, namely, the year 1860, that Darwin first published his theory of descent. At the first glance the two theories seem to have no connection with one another, and so the coincidence in time appears to be quite accidental. But if we go deeper into the matter, we find a resemblance between them which is of great historical importance; they both of them exchange the purely formal consideration of organic bodies, which had prevailed up to that time, for a consideration of causes ; as Darwin's doctrine endeavours to account for the specific forms of animals and plants from the principles of inheritance and variability under the disturbing or favouring influence of external circumstances, so the object of Nageli's theory is to refer the growth and inner structure of organised bodies to chemical and mechanical processes. The future will show, whether the views which we owe to Nägeli will not contribute to the laying a deeper foundation for the theory of descent, since it is not improbable that a more thorough understanding of the molecular structure of organisms may add light and certainty to the still obscure conceptions of inheritance and variation.

The first beginnings were, as is usual in similar cases, small and inappreciable, and no one could have foreseen from the first observations of the facts in question what the ultimate development would be. We have said above, that von Mohl observed as early as 1836 the striation of certain cell-walls, and that this led Meyen, on the ground of further but to some extent inaccurate observations, to conceive of vegetable cell-walls as composed of spirally twisted threads. It was also noticed that von Mohl next distinguished true striation from spiral thickenings (1837), the two having been confused together by Meyen, and advanced so far as to form some idea of the molecular structure of cell-walls, without arriving however at any satisfactory conclusion. Agardh, who discovered some new instances of cell-striation, was still less successful in his speculations. Von Mohl resumed the subject in 1853 in the 'Botanische Zeitung,' and insisted on the fact that it was not possible to separate the striae or apparent fibres by mechanical or chemical means, but he left it still undecided whether the lines which cross each other in the surface-view belong to the same or to different layers of membrane. The communications of Crüger and Schacht, made shortly after, did not help to advance the question; Wigand also took part in the discussion in 1856, but wandered at once from the right path by supposing the cross-striations to belong to different layers of membrane. As long as botanists adhered to von Mohl's theory, that the concentric stratification of cell-walls was due to deposition of new layers, it was scarcely possible for them to arrive at a correct decision with respect to striation; it became possible, when Nägeli proved in his great work 'Die Starkekorner ' (1858) that the concentric stratification of starch-grains and of cell-membranes generally does not mean, that similar layers lie simply one on another, but that denser and less watery layers alternate with layers that are less dense and contain more water; and that it is not possible to explain this mode of stratification by deposition as understood by von Mohl, but that it may be explained by intercalation of new molecules between the old ones and by corresponding differentiation of the amount of water. That surface-growth in cell-walls does take place by this kind of intussusception had been incidentally suggested by Unger, and the appearance, known as the striation of the cell-wall might now be referred to the same principle as the concentric stratification, namely to the intercalation of more and less watery matter in regular alternation. But Nägeli pointed out a fact which had escaped other observers, namely, that the difference of structure which usually appears on the surface-view as double cross-striation, passes through the whole thickness of a stratified cell-wall. Thus Nägeli arrived at a differentiation in three directions in space of the substance of every minute portion of cell-membrane, and made better use than von Mohl himself had made of the comparison which he had suggested, namely, that the structure of a cell-wall with cross-striation and at the same time with concentric stratification resembles that of a crystal cleaving in three directions. He first gave expression to this conception of the structure of the cell-wall in 1862 in his 'Botanische Untersuchungen,' I. p. 187, and further developed it in the second volume of the same work at p. 147.

But the true starting-point of Nageli's theory of molecular structure is to be found in his searching investigations in 1858, into the constitution of starch-grains. From the way in which they resist the effects of pressure, drying, distention, and withdrawal of a part of their substance, he arrived at the conclusion that the whole substance of a starch-grain is composed of molecules, whose shape must be not spherical but polyhedral, that these are separated from one another in their normal condition by envelopes of water, and that the amount of water in the stratified substance depends on the size of these molecules, the water being less when the molecules are larger; this view could at once be applied to the structure of the cell-wall, the growth of which may be explained as the increase in size of the molecules already present, and the intercalation of new small molecules between the old ones. These molecules of Nägeli are themselves very compound bodies, for the smallest of them would consist of numerous atoms of carbon, hydrogen and oxygen, and ordinarily a molecule would be composed of thousands of those aggregates of atoms, which the chemists call molecules.

In examining starch-grains Nägeli came to- the conclusion that molecules of different chemical character are grouped together at every visible point; the material which colours blue with iodine, the granulose, could be removed from the grains, and then there remained behind a skeleton of the starch-grain very poor in substance, but showing exactly the original stratification and giving no blue colour with iodine; this Nägeli named starch-cellulose. It followed from this behaviour, that two chemically different molecules lie everywhere side by side in the grain of starch, much as if red and yellow bricks had been so employed to build a house, that when all the yellow bricks were afterwards removed, the red alone would still represent the wall in its original form as a whole though in a looser condition. He arrived at similar results in the case of the crystalloid proteid bodies, which Theodor Hartig discovered, and Radlkofer had examined crystallographically, Maschke chemically. Since it is possible in the same manner to extract the so-called incrusting matters from cell-membranes without essentially altering their form, and to obtain ash-skeletons of them which imitate all the delicacies of their structure, the comparison adopted above may also be applied in still more complex manner to the molecular structure of these membranes ; and indeed many considerations lead to the belief, that the ideas which Nägeli obtained from starch-grains may be applied with some modifications to the structure of protoplasm also.

We said that the appearances in the starch-grains led Nägeli to suppose that their molecules are not spherical but polyhedral, and the question naturally arose whether they are really crystalline. The point could be settled by the use of polarised light, to which different observers had already turned their attention. Erlach in 1847, Ehrenberg in 1849, had employed polarised light for the determination of microscopic objects, without however arriving at any conclusions on the subject of molecular structure; Schacht indeed at a later time declared such observations to be a pretty amusement, but without scientific value. But soon we have once more one of von Mohl's careful and solid investigations ('Botanische Zeitung,' 1858), in which with the aid of technical improvements in the apparatus he arrived at conclusions respecting the nature and substance of cell-membranes, starch-grains, &c., which proved that in the hands of a reflecting observer perfectly familiar with the physics of polarised light the instrument is no toy, but a means for penetrating deeply into nature's secrets. Yet on this occasion also appeared that peculiarity in von Mohl which twenty years before had prevented him from founding a conclusive theory upon his profound and extended observations on cell-formation; he was content once more to observe thoroughly and correctly, to describe what he observed carefully, and to connect it with proximate physical principles in such a manner as to supply rather a classification of phenomena, than a new and deeper insight into the essence of the matter. He wanted the creative thought, the intense mental effort, to arrive by analysis at the ultimate elements in the results of his investigations and to frame for himself a clear representation of the inner structure of the organised parts. Von Mohl in this case also stopped short at induction and did not pass on to deductive and constructive elaboration of the question before him; this was left to Nägeli, as we shall see.

Meanwhile a more exhaustive work appeared in 1861 from the pen of Valentin on the investigation of vegetable and animal tissue in polarised light, in which the author, equipped with great knowledge of the subject itself and its literature, examined in detail the phenomena of polarisation, gave a good account of the instrument and the mode of using it, and explained generally the theory and practice of investigations of the kind. But he overlooked one fact noticed by von Mohl, that vegetable cell-membranes, through which rays of polarised light pass perpendicularly to their surface, show interference-colours, and this was sure to lead him to an incorrect explanation of their inner structure.

Nägeli from 1859 onwards made the phenomena of polarisation the subject of protracted study, practical and theoretical; the results were published in 1863 in his 'Beitrage,' Heft 3, but he had in the previous year made known that portion

of them which bore on the molecular structure of cell-walls and starch-grains ('Botanische Mittheilungen,' 1862). The phenomena of polarisation led him once more and by a different path to the view that the organised parts of the vegetable cell consist of isolated molecules surrounded by a fluid, and his renewed investigations of these phenomena resulted in more definite conceptions of the nature of these molecules, which from the optical behaviour of the objects examined he concluded were not only polyhedral but crystalline; in effect, the molecules of the substance of the organised parts of plants behave, according to Nägeli, as crystals with two optic axes, which therefore possess three different axes of elasticity; in starch-grains and cell-membranes these crystalline molecules are so arranged that one of these axes is always perpendicular to the stratification, while the two others lie in its plane. The effect of the organised parts of the cells on polarised light is the sum of the effects of the single molecules, whereas the fluid that lies between them is optically inactive, and only comes into consideration because according to its quantity the molecules separate more or less far from or approach one another.




  1. On this point, see von Mohl's citation in 'Flora' of 1827, p. 13. I have not myself been able to consult the originals.
  2. See Meyen, 'Neues System,' ii. 344.
  3. Franz Unger was born in 1800 on the estate of Amthof, near Leutschach in South Steiermark, and was educated up to the age of sixteen in the Benedictine Monastery of Gratz. Having gone through the three years' course of 'philosophy,' he turned his attention, by his father's wish, to jurisprudence; but he abandoned this study in 1820, and became a student of medicine, first in Vienna, and afterwards in Prague. From the latter place he made a vacation tour in Germany, and formed the acquaintance of Oken, Carus, Rudolphi, and other men of science, and in 1825 of Jacquin and Endlicher, with the latter of whom he maintained an active correspondence on scientific subjects. Having taken his degree in 1827, he practised as a physician in Vienna till the year 1830, and after that date was medical official at Kilzbühl in the Tyrol. During these years he continued the botanical studies which he had commenced as a youth, and at Kitzbühl directed special attention to the diseases of plants, to palaeontological researches, and to enquiries into the influence of soil on the distribution of plants. At the end of 1835 he became Professor of Botany at the Johanneum in Gratz, and devoting himself there especially to the study of palaeontology, he soon became the most eminent authority on that subject. Having been made Professor of Vegetable Physiology in Vienna in 1849, he applied himself more to physiology and phytotomy. He retired from this position in 1866, and from that time forward lived as a private individual in Gratz, promoting scientific knowledge by the publication of popular treatises and the delivery of lectures. He died in 1870. Information respecting his personal character and his varied and copious labours in many departments of botanical science is given by Leitgeb in the 'Botanische Zeitung ' of 1870, No. 16, and by Reyer, 'Leben und Wirken des Naturhistoriker Unger,' Gratz, 1871.
  4. Hermann Schacht was born at Ochsenwerder in 1824, and died in 1864 in Bonn, where he had been Professor of Botany since 1859.
  5. See Sachs, 'Lehrbuch der Botanik,' ed. 4 (1874), p. 129 (p. 128 of 2nd English edition).