Micrographia/Chapter 16

From Wikisource
Jump to navigation Jump to search
2630519Micrographia — Chapter 16Robert Hooke

Observ. XVI.Of Charcoal, or burnt Vegetables.

CHarcoal, or a Vegetable burnt black, affords an object no less pleasant than instructive, for if you take a small round Charcoal, and break it short with your fingers, you may perceive it to break with a very smooth and sleek surface, almost like the surface of black sealing Wax; this surface, if it be look'd on with an ordinary Microscope, does manifest abundance of those pores which are also visible to the eye in many kinds of Wood, rang'd round the pith, both a in kind of circular order, and a radiant one. Of these there are a multitude in the substance of the Coal, every where almost perforating and drilling it from end to end; by means of which, be the Coal never so long, you may easily blow through it; and this you may presently find, by wetting one end of it with Spittle, and blowing at the other.

But this is not all, for besides those many great and conspicuous irregular spots or pores, if a better Microscope be made use of, there will appear an infinite company of exceedingly small, and very regular pores, so thick and so orderly set, and so close to one another, that they leave very little room or space between them to be fill'd with a solid body, for the apparent interstitia or separating sides of these pores seem so thin in some places, that the texture of a Honey-comb cannot be more porous. Though this be not every where so, the intercurrent partitions in some places being very much thicker in proportion to the holes.

Most of these small pores seem'd to be pretty round, and were rang'd in rows that radiated from the pith to the bark; they all of them seem'd to be continued open pores, running the whole length of the Stick; and that they were all perforated, I try'd by breaking off a very thin sliver of the Coal cross-ways, and then with my Microscope, diligently surveying them against the light, for by that means I was able to see quite through them.

These pores were so exceeding small and thick, that in a line of them, 1/18 part of an Inch long, I found by numbring them no less then 150. small pores; and therefore in a line of them an Inch long, must be no less then 2700. pores, and in a circular area of an Inch diameter, must be about 5725350. of the like pores; so that a Stick of an Inch Diameter, may containe no less then seven hundred and twenty five thousand, besides 5 Millions of pores, which would, I doubt not, seem even incredible, were not every one left to believe his own eyes. Nay, having since examin'd Cocus, black and green Ebony, Lignum Vitæ, &c. I found, that all these Woods have their pores, abundantly smaller then those of soft light Wood; in so much, that those of Guajacum seem'd not above an eighth part of the bigness of the pores of Beech, but then the Interstitia were thicker; so prodigiously curious are the contrivances, pipes, or sluces by which the Succus nutritius, or Juyce of a Vegetable is convey'd from place to place.

This Observation seems to afford us the true reason of several Phænomena of Coals; as

First, why they look black; and for this we need go no further then the Scheme, for certainly, a body that has so many pores in it as this is discover'd to have, from each of which no light is reflected, must necessarily look black, especially, when the pores are somewhat bigger in proportion to the intervals then they are cut in the Scheme, black being nothing else but a privation of Light, or a want of reflection; and wheresover this reflecting quality is deficient, there does that part look black, whether it be from a porousness of the body, as in this Instance, or in a deadning and dulling quality, such as I have observ'd in the Scoria of Lead, Tin, Silver, Copper, &c.

Next, we may also as plainly see the reason of its shining quality, and that is from the even breaking off of the stick, the solid interstitia having a regular termination or surface, and having a pretty strong reflecting quality, the many small reflections become united to the naked eye, and make a very pretty shining surface.

Thirdly, the reason of its hardness and brittleness seems evident, for since all the watery or liquid substance that moistn'd and toughn'd those Interstitia of the more solid parts, are evaporated and remov'd, that which is left behind becomes of the nature almost of a stone, which will not at all, or very little, bend without a divulsion or solution of its continuity.

It is not my design at present, to examine the use and Mechanisme of these parts of Wood, that being more proper to another Enquiry; but rather to hint, that from this Experiment we may learn,

First, what is the cause of the blackness of many burnt bodies, which we may find to be nothing else but this; that the heat of the fire agitating and rarifying the waterish, transparent, and volatile water that is contain'd in them, by the continuation of that action, does so totally expel and drive away all that which before fill'd the pores, and was dispers'd also through the solid mass of it, and thereby caus'd an universal kind of transparency, that it not onely leaves all the pores empty, but all the Interstitia also so dry and opacous, and perhaps also yet further perforated, that that light onely is reflected back which falls upon the very outward edges of the pores, all they that enter into the pores of the body, never returning, but being lost in it.

Now, that the Charring or coaling of a body is nothing else, may be easily believ'd by one that shall consider the means of its production, which may be done after this, or any such manner. The body to be charr'd or coal'd, may be put into a Crucible, Pot, or any other Vessel that will endure to be made red-hot in the fire without breaking, and then cover'd over with Sand, so as no part of it be suffer'd to be open to the Air, then set into a good fire, and there kept till the Sand has continu'd red hot for a quarter, half, an hour or two, or more, according to the nature and bigness of the body to be coal'd or charr'd, then taking it out of the fire, and letting it stand till it be quite cold, the body may be taken out of the Sand well charr'd and cleans'd of its waterish parts; but in the taking of it out, care must be had that the Sand be very neer cold, for else, when it comes into the free air, it will take fire, and readily burn away.

This may be done also in any close Vessel of Glass, as a Retort, or the like, and the several fluid substances that come over may be receiv'd in a fit Recipient, which will yet further countenance this Hypothesis: And their manner of charring Wood in great quantity comes much to the same thing, namely, an application of a great heat to the body, and preserving it from the free access of the devouring air; this may be easily learn'd from the History of Charring of Coal, most excellently describ'd and publish'd by that most accomplish'd Gentleman, Mr. John Evelin, in the 100, 101, 103, pages of his Sylva, to which I shall therefore refer the curious Reader that desires a full information of it. Next, we may learn what part of the Wood it is that is the combustible matter, for since we shall find that none, or very little of those fluid substances that are driven over into the Receiver are combustible, and that most of that which is left behind is so, it follows, that the solid interstitia of the Wood are the combustible matter. Further, the reason why uncharr'd Wood burns with a greater flame then that which is charr'd, is as evident, because those waterish or volatil parts issuing out of the fired Wood, every way, not onely shatter and open the body, the better for the fire to enter, but issuing out in vapours or wind, they become like so many little æolipiles, or Bellows, whereby they blow and agitate the fir'd part, and conduce to the more speedy and violent consumption or dissolution of the body.

Thirdly, from the Experiment of charring of Coals (whereby we see that notwithstanding the great heat, and the duration of it, the solid parts of the Wood remain, whilest they are preserv'd from the free access of the air undissipated) we may learn, that which has not, that I know of, been publish'd or hinted, nay, not so much as thought of, by any; and that in short is this.

First, that the Air in which we live, move, and breath, and which encompasses very many, and cherishes most bodies it encompasses, that this Air is the menstruum, or universal dissolvent of all Sulphureous bodies.

Secondly, that this action it performs not, till the body be first sufficiently heated, as we find requisite also to the dissolution of many other bodies by several other menstruums.

Thirdly, that this action of dissolution, produces or generates a very great heat, and that which we call Fire; and this is common also to many dissolutions of other bodies, made by menstruums, of which I could give multitudes of Instances.

Fourthly, that this action is perform'd with so great a violence, and does so minutely act, and rapidly agitate the smallest parts of the combustible matter, that it produces in the diaphanous medium of the Air, the action or pulse of light, which what it is, I have else-where already shewn.

Fifthly, that the dissolution of sulphureous bodies is made by a substance inherent, and mixt with the Air, that is like, if not the very same, with that which is fixt in Salt-peter, which by multitudes of Experiments that may be made with Saltpeter, will, I think, most evidently be demonstrated.

Sixthly, that in this dissolution of bodies by the Air, a certain part is united and mixt, or dissolv'd and turn'd into the Air, and made to fly up and down with it in the same manner as a metalline or other body dissolved into any menstruums, does follow the motions and progresses of that menstruum till it be precipitated.

Seventhly, That as there is one part that is dissoluble by the Air, so are there other parts with which the parts of the Air mixing and uniting, do make a Coagulum, or precipitation, as one may call it, which causes it to be separated from the Air, but this precipitate is so light, and in so small and rarify'd or porous clusters, that it is very volatil, and is easily carry'd up by the motion of the Air, though afterwards, when the heat and agitation that kept it rarify'd ceases, it easily condenses, and commixt with other indissoluble parts, it sticks and adheres to the next bodies it meets withall; and this is a certain Salt that may be extracted out of Soot.

Eighthly, that many indissoluble parts being very apt and prompt to be rarify'd, and so, whilest they continue in that heat and agitation, are lighter then the Ambient Air, are thereby thrust and carry'd upwards with great violence, and by that means carry along with them, not onely that Saline concrete I mention'd before, but many terrestrial, or indissoluble and irrarefiable parts, nay, many parts also which are dissoluble, but are not suffer'd to stay long enough in a sufficient heat to make them prompt and apt for that action. And therefore we find in Soot, not onely a part, that being continued longer in a competent heat, will be dissolv'd by the Air, or take fire and burn; but a part also which is fixt, terrestrial, and irrarefiable.

Ninthly, that as there are these several parts that will rarifie and fly, or be driven up by the heat, so are there many others, that as they are indissoluble by the aerial menstruum, so are they of such sluggish and gross parts, that they are not easily rarify'd by heat, and therefore cannot be rais'd by it; the volatility or fixtness of a body seeming to consist only in this, that the one is of a texture, or has component parts that will be easily rarify'd into the form of Air, and the other, that it has such as will not, without much ado, be brought to such a constitution; and this is that part which remains behind in a white body call'd Ashes, which contains a substance, or Salt, which Chymists call Alkali: what the particular natures of each of these bodies are, I shall not here examine, intending it in another place, but shall rather add that this Hypothesis does so exactly agree with all Phænomena, of Fire, and so genuinely explicate each particular circumstance that I have hitherto observ'd, that it is more then probable, that this cause which I have assign'd is the true adequate, real, and onely cause of those Phænomena; And therefore I shall proceed a little further, to shew the nature and use of the Air.

Tenthly, therefore the dissolving parts of the Air are but few, that is, it seems of the nature of those Saline menstruums, or spirits, that have very much flegme mixt with the spirits, and therefore a small parcel of it is quickly glutted, and will dissolve no more; and therefore unless some fresh part of this menstruum be apply'd to the body to be dissolv'd, the action ceases, and the body leaves to be dissolv'd and to shine, which is the Indication of it, though plac'd or kept in the greatest heat; whereas Salt-peter is a menstruum, when melted and red-hot, that abounds more with those Dissolvent particles, and therefore as a small quantity of it will dissolve a great sulphureous body, so will the dissolution be very quick and violent.

Therefore in the Eleventh place, it is observable, that, as in other solutions, if a copious and quick supply of fresh menstruum, though but weak, be poured on, or applied to the dissoluble body, it quickly consumes it: So this menstruum of the Air, if by Bellows, or any other such contrivance, it be copiously apply'd to the shining body, is found to dissolve it as soon, and as violently as the more strong menstruum of melted Nitre.

Therefore twelfthly, it seems reasonable to think that there is no such thing as an Element of Fire that should attract or draw up the flame, or towards which the flame should endeavour to ascend out of a desire or appetite of uniting with that as its Homogeneal primitive and generating Element; but that that shining transient body which we call Flame, is nothing else but a mixture of Air, and volatil sulphureous parts of dissoluble or combustible bodies, which are acting upon each other whilst they ascend, that is, flame seems to be a mixture of Air, and the combustible volatil parts of any body, which parts the encompassing Air does dissolve or work upon, which action, as it does intend the heat of the aerial parts of the dissolvent, so does it thereby further rarifie those parts that are acting, or that are very neer them, whereby they growing much lighter then the heavie parts of that menstruum that are more remote, are thereby protruded and driven upward; and this may be easily observ'd also in dissolution made by any other menstruum, especially such as either create heat or bubbles. Now, this action of the menstruum, or Air, on the dissoluble parts, is made with such violence, or is such, that it imparts such a motion or pulse to the diaphanous parts of the Air, as I have elsewhere shewn is requisite to produce light.

This Hypothesis I have endeavoured to raise from an Infinite of Observations and Experiments, the process of which would be much too long to be here inserted, and will perhaps another time afford matter copious enough for a much larger Discourse, the Air being a Subject which (though all the world has hitherto liv'd and breath'd in, and been unconversant about) has yet been so little truly examin'd or explain'd, that a diligent enquirer will be able to find but very little information from what has been (till of late) written of it: But being once well understood, it will, I doubt not, inable a man to render an intelligible, nay probable, if not the true reason of all the Phænomena of Fire, which, as it has been found by Writers and Philosophers of all Ages a matter of no small difficulty, as may be sufficiently understood by their strange Hypotheses, and unintelligible Solutions of some few Phænomena of it; so will it prove a matter of no small concern and use in humane affairs, as I shall elsewhere endeavour to manifest when I come to shew the use of the Air in respiration, and for the preservation of the life, nay, for the conservation and restauration of the health and natural constitution of mankind as well as all other aereal animals, as also the uses of this principle or propriety of the Air in chymical, mechanical, and other operations. In this place I have onely time to hint an Hypothesis, which, if God permit me life and opportunity, I may elsewhere prosecute, improve and publish. In the mean time, before I finish this Discourse, I must not forget to acquaint the Reader, that having had the liberty granted me of making some trials on a piece of Lignum fossile shewn to the Royal Society, by the eminently Ingenious and Learned Physician, Doctor Ent, who receiv'd it for a Present from the famous Ingenioso Cavalliero de Pozzi, it being one of the fairest and best pieces of Lignum fossile he had seen; Having (I say) taken a small piece of this Wood, and examin'd it, I found it to burn in the open Air almost like other Wood, and insteed of a resinous smoak or fume, it yielded a very bituminous one, smelling much of that kind of sent: But that which I chiefly took notice of, was, that cutting off a small piece of it, about the bigness of my Thumb, and charring it in a Crucible with Sand, after the manner I above prescrib'd, I found it infinitely to abound with the smaller sort of pores, so extreamly[errata 1]extreamly thick, and so regularly perforating the substance of it long-ways, that breaking it off a-cross, I found it to look very like an Honey-comb; but as for any of the second, or bigger kind of pores, I could not find that it had any; so that it seems, whatever were the cause of its production, it was not without those small kind of pores which we have onely hitherto found in Vegetable bodies: and comparing them with the pores which I have found in the Charcoals that I by this means made of several other kinds of Wood, I find it resemble none so much as those of Fire, to which it is not much unlike in grain also, and several other proprieties. And therefore, what ever is by some, who have written of it, and particularly by Francisco Stelluto, wrote a Treatise in Italian of that Subject, which was Printed at Rome, 1637, affirm'd that it is a certain kind of Clay or Earth, which in tract of time is turn'd into Wood; I rather suspect the quite contrary, that it was at first certain great Trees of Fir or Pine, which by some Earthquake, or other casualty, came to be buried under the Earth, and was there, after a long time's residence (according to the several natures of the encompassing adjacent parts) either rotted and turn'd into a kind of Clay, or petrify'd and turn'd into a kind of Stone, or else had its pores fill'd with certain Mineral juices, which being stay'd in them, and in tract of time coagulated, appear'd, upon cleaving out, like small Metaline Wires, or else from some flames or scorching forms that are the occasion oftentimes, and usually accompany Earthquakes, might be blasted and turn'd into Coal, or else from certain subterraneous fires which are affirm'd by that Authour to abound much about those parts (namely, in a Province of Italy, call'd Umbria, now the Dutchie of Spoletto, in the Territory of Todi, anciently call'd Tudor; and between the two Villages of Collesecco and Rosaro not far distant from the high-way leading to Rome, where it is found in greater quantity then elsewhere) are by reason of their being encompassed with Earth, and so kept close from the dissolving Air, charr'd and converted into Coal. It would be too long a work to describe the several kinds of pores which I met withall, and by this means discovered in several other Vegetable bodies; nor is it my present design to expatiate upon Instances of the same kind, but rather to give a Specimen of as many kinds as I have had opportunity as yet of observing, reserving the prosecution and enlarging on particulars till a more fit opportunity; and in prosecution of this design, I shall here add:


Schem. X.

Errata

  1. Original: extreme was amended to extreamly: detail