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ALGEBRA I C

to which the quartic is in general reducible is, f=xix + Qmxl1xi2+x*2,
involving one parameter m; then
+ x^) + 2(l - dm )x‘^,
t = 2(l + 3m2) ; j = 6m(l - m)2 ; < = (l - 9m2)(x2 - x2)(a:2 + a;2^.
The sextic covariant t is seen to be factorizable into three quadratic
factors 
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    {\displaystyle \phi =x_{1},x_{2},\psi =x_{1}^{2}+x_{2}^{2},\psi =x_{1}^{2}-x_{2}^{2}}
  
[image: {\displaystyle \phi =x_{1},x_{2},\psi =x_{1}^{2}+x_{2}^{2},\psi =x_{1}^{2}-x_{2}^{2}}], which are such that the
three mutual second transvectants vanish identically ; they are
for this reason termed conjugate quadratic factors. It is on a
consideration of these factors of t that Cayley bases his solution
of the quartic equation. For, since
—
—
he compares the right - hand side with the cubic resolvent
yfc3-i/, of /= 0, and notices that they become identical
on substituting A for Ic, and —f for X ; hence, if Aq, Jc2, he the
roots of the resolvent,
-2^=(A + k1f)(A + Jc2f)(A + Jc3f);
and now, if all the roots of/ be different, so also are those of the
resolvent, since the latter, and /, have practically the same
discriminant ; consequently each of the three factors, of - 2t2, must
be perfect squares and taking the square root
and it can be shown that 0, x> 'Z' are the three conjugate
quadratic 2factors of t above
mentioned. We have A + k1f=<t>1,
A + £2/=x , A + &3/= V/2, an(i Cayley shows that a root of the
quartic can be expressed in the determinant form
the remaining roots being obtained by vary1 > > Qy
ing the signs which occur in the radicals
1 > > Xy
0), Xy, 'p})- The transformation to the normal
form
reduces the quartic to a quadratic. The
y =0 new variables are the linear factors of <£.
y2=l If<p=rx.sx, the normal form of a^, can be shown
to he given by
(rs)4. <4=(«A4 + 6(ar)2(as)2r£4 + (as)V4 ;
<f> is any one of the conjugate quadratic factors of t, so that, in
determining rx, sx from /A + Aq/ = 0, Aq is any root of the resolvent. The transformation to the normal form, by the solution
of a cubic and a quadratic, therefore, supplies a solution of the
quartic. If (A/x) is the modulus of the transformation by which
<4 is reduced
to the normal form, i becomes (X/x)4i, and j,
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hence ^ is absolutely unaltered by transformation, and is termed
^
i3 2 (l+3m2)2 we
the absolute invariant. Since therefore y = x9 mql
^ - sta have
a cubic equation for determining m2 as a function of the absolute
invariant.
Remark.—Hermite ;has shown {Crelle, Bd. lii.) that the substitution, z =  reduces x^::Xl
^}le form
J f
V/
dz
2i
V 3 2 +i3
The Binary Quintic.—The complete system consists of 23 forms, of
which the simplest are/= ax ; the Hessian H = (/, /')2 = {abyaxbx
the quadratic covariant i=(f,f,')i:=(ab')‘laxbx ; and the nonic covariant T = (/, (/', /02)1 = (/, H)1 = («H)a4Hj = (ab)Xca)albl4;
the remaining 19 are expressible as transvectants of compounds
of these four.
There are four invariants (i, i')2;2 4(i3, H)63;5 (f2,4i5)108; (ft,
i7)u
four linear forms (/, i ) ; (/, i 2) 4; (i , T)3 ;5 (i5, T)9
three quadratic forms i2 ; (H , 2i 3) ; (H,
i)
three cubic forms (/, i) ; (/, i ') ;2 3(i3, T)8
two quartic forms (H ,i)2; (H,
i
'
)
.
three quintic forms /; (/, i)1; (i2, T)4
two sextic forms H ; 2(H, i)1
one septic form (i, T)
one nonic form T.
We will write the3 cubic covariant (f,i)2=j, and then remark that
the result, (/,i) = 0, can be readily established.
The form j is
completely defined by the relation (/,i)3 = 0 as no other covariant
possesses this property.
Certain covariants of the quintic involve the same determinant
factors as appeared in the system of the quartic ; these are /, H,
i, T, and j, and are of special importance. Further, it is convenient to have before us two other quadratic covariants, viz.,
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2

r = (j,j) jxjx ", 0 = (ir)ixTx ; four other linear covariants, viz.,
a = - (jifjx ; (3 = (ia,ix; 7 = (ra)rx ; S = (rp)Tx. Further, in the
case of invariants,
we write A = (i,i’)2 and take three new forms
B = (i,r)2; C = (t,t')2; K,= (/3y). Hermite expresses the quintic
in a forme-type in which the constants are invariants and the
variables linear covariants. If a, (3 be the linear forms, above
defined, he raises the identity ax(af}) = af aft) - j3x(aa) to the fifth
power (and in general to the power n) obtaining
(a/3)y=(«/3)54 - 5(a(3)4(aa)alj3x+ ... - (aa)5/3|;
and then expresses the coefficients, on the right, in terms of the
fundamental invariants. On this principle the covariant j is expressible in the form
R2; = 53 + |B52a + ^AC5a2 + |c(3AB - 4C)a3
when 5, a are the above defined linear forms.
Hence, solving the cubic,
R,2y = (5 - m1a)(5 - m2a)(S - m3a)
wherein mi, m2, m3 are invariants.
Sylvester showed that the quintic might, in general, be expressed as the 5sum of three
fifth powers, viz., in the canonical
form f— Aq(pf) + k2(qx)5 + k3(rx)5- How, evidently, the ( third
transvectant of /, expressed in this form, with the cubic px lxrx is
zero, and hence from a property of the covariant j we must have
j =pxqxrx ; showing that the linear forms involved are the linear
factors of/. We may therefore write
f=z Aq(5 - wqa)5 + Aq(S - m2a)3 + &3(S - m3af;
and we have merely to determine the constants Aq, Aq, k3. To
determine them notice that R, = (a5) and then
(/>a5)5 = - R5(*i+K+*3)’
(/.a45)5 = - 5R5(m1A:1 + mjc2 + mjc^),
(/, a3o2)5 = - lOR^m^ +m2A;2 + ?n2A;3),
three equations for determining A,1, k2, k3. This canonical form
depends upon / having three unequal linear factors. When 0
vanishes j has the form j^pfyx, and (/,/)3 = (ap)2(ag')a|=;0.
Hence, from the identity ax(pq)—px(aq)-qx(ap), we obtain
(,jP<iTf=(a<l)Yx - Z>(.ap)(a<i)iP'kx - («p)52x> the required
canonical
form. How, when C = 0, clearly (see ante) R2/ = b2p where
6R4./= B55 + 5B5> - 4A2pB,
which is Bring’s form of quintic at which we can always arrive,
by linear transformation, whenever the invariant C vanishes.
Remark.—The invariant C is a numerical multiple of the
resultant of the covariants i and /, and if C = 0, p is the common
factor of i and j.
The discriminant is the resultant of CCQGy
77 and CX2 and of degree
8 in the coefficients ; since it is a rational and integral function
of the
fundamental invariants it is expressible as a linear function
of A2 and B ; it is independent of C, and is therefore unaltered
when C vanishes ; we may therefore take / in the canonical form
6R4/= B<55 + 5B54p - 4A2p5.
The two equations
^=5(B54 + 4B53p) = 0,
§L=5(B54-4A2p4) = 0,
dp
yield by elimination of 5 and p the discriminant
D = 64B - A2.
The general equation of degree 5 cannot be solved algebraically,
but the roots can be expressed by means of elliptic modular
functions. For an algebraic solution the invariants must fulfil
certain2conditions. When R = 0, and neither of the expressions
AC - B , 2AB - 3C vanishes,
the covariant ax is a linear factor of
f; but, when R = AC - B2 = 2AB - 3C = 0, ax also vanishes, and
then / is the product of the form /| and of the Hessian of j3.
When ax and the invariants B and C all vanish, either A or j
must vanish ; in the former case j is a perfect cube, its Hessian
vanishing, and further / contains j as a factor; in the latter
case, if px,<rx be the linear factors of i, /can be expressed as
(pcr)/=c1p^ + c04 i if both A and j vanish i also vanishes identically, and so also does/. If, however, the condition be the vanishing of i, f contains a linear factor to the fourth power.
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