Page:1902 Encyclopædia Britannica - Volume 25 - A-AUS.pdf/503

From Wikisource
Jump to navigation Jump to search
This page needs to be proofread.

A N T H genus, Pennatula (Fig. 8), the colony looks like a feather having a stem, divisible into an upper moiety or rachis, bearing lateral central leaflets (pinnae), and a lower peduncle, which is sterile and imbedded in sand or mud. The stem represents a greatly enlarged and elongated mother zooid. It is divided longitudinally by a partition separating a so-called “ventral” or prorachidial canal from a so-called “dorsal” or metarachidial canal. A rod-like supporting axis of peculiar texture is developed in the longitudinal partition, and a longitudinal canal is hollowed out on either side of the axis in the substance of the longitudinal partition, so that there are four stem-canals in all. The prorachidial and metarachidial aspects of the rachis are sterile, but the sides or pararachides bear numerous daughter zooids of two kinds—(1) fully-formed autozooids, (2) small stunted siphonozooids. The pinnae are formed by the elongated autozooids, whose proximal portions are fused together to form a leaf-like expansion, from the upper edge of which the distal extremities of the zooids project. The siphonozooids are very numerous and lie between the bases of the pinnae on the pararachides; they extend also on the prorachidial and metarachidial surfaces. The calcareous skeleton of the Pennatulacea consists of scattered spicules, but in one species, Protocaulon molle, spicules are absent. Although of great interest the Pennatulacea do not form an enduring skeleton or “coral,” and need not be considered in detail in this place. The order Ocunothecalia is represented by a single living species, Heliopora ccerulea, which differs from all recent Alcyonaria in the fact that its skeleton is not composed of spicules, but is formed as a secretion from a layer of cells called calicoblasts, which originate from the ectoderm. The corallum of Heliopora is of a blue colour, and has the form of broad, upright, lobed, or digitate masses flattened Irom side to side. The surfaces are pitted all over with nerforations

Fig. 9.—A, Portion of the surface of a colony of Ilellopora arrulea magnified, showing two calices and the surrounding coenenehymal tubes. B, Single zooid with the adjacent soft tissues as seen after removal of the skeleton by decalcification. Zi, the distal, and Z2, the proximal or intracalicular portion of the zooid ; ec, ectoderm ; ct, ccenenchymal tubes ; sp, superficial network of solenia. of two kinds, viz., larger star-shaped cavities, called calices, in which the zooids are lodged, and very numerous smaller round or polygonal apertures, which in life contain as many short unbranched tubes, known as the ccenenchymal tubes (Fig. 9, A). The walls of the calices and coenenchymal tubes are formed of flat plates of calcite, which are so disposed that the walls of one tube enter into the composition of the walls of adjacent tubes, and the walls of the calices are formed by the walls of adjacent coenenchymal tubes. Thus the architecture of the Helioporid colony differs entirely from such forms as Tubipora or Favosites, in which each corallite has its own distinct and proper wall. The cavities both of the calices and coenenchymal tubes of Heliopora are closed below by horizontal partitions or tabulae, hence the genus was formerly included in the group Tabulata, and was supposed to belong to the madreporarian corals, both because of its lamellar skeleton, which resembles that of a Madrepore, and because each calicle has from twelve to fifteen radial partitions or septa projecting into its cavity. The structure of the zooid of Heliopora, however, is that of a typical Alcyonarian, and the septa have only a resemblance to, but no real homology with, the similarly-named structures in madreporarian corals. Heliopora ccerulea is found between tide-marks on the shore platforms of coral islands. The order was more abundantly represented in Palaeozoic times by the Heliolitidae from the Upper and Lower Silurian and the Devonian, and by the Thecidae from the Wenlock limestone. In Heliolites porosus the colonies had the form of spheroidal masses; the calices were furnished with twelve pseudosepta, and the coenenchymal tubes were more or less regularly hexagonal. Zoantharia. —In this sub-class the arrangement of the mesenteries is subject to a great deal of variation, but all the types hitherto observed may be referred to a common plan, illustrated by the living genus Edioardsia (Fig. 10, A, B). This is a small solitary Zoantharian which lives embedded in sand. Its body is divisible into three portions, an upper capitulum bearing the mouth and tentacles, a median scapus covered by a friable cuticle, and a terminal physa which is rounded. Both capitulum and physa can be retracted

O Z 0 A

457

within the scapus. There are from sixteen to thirty-two simple tentacles, but only eight mesenteries, all of which are complete. The stomodseum is compressed laterally, and is furnished with two longitudinal grooves, a sulcus and a sulculus. The, arrangement of the muscle-banners on the mesenteries is characteristic. On six of the mesenteries the muscle-banners have the same position as in the Alcyonaria, namely, on the sulcar faces ; but in the two remaining mesenteries, namely, those which are attached on either side of the sulcus, the muscle-banners are on the opposite or sulcular faces. It is not known whether all the eight mesenteries of Edwardsia are developed simultaneously or not, but in the youngest form which has been studied all the eight mesenteries were present, but only two of them, namely the sulco-laterals, bore mesenterial filaments, and so it is presumed that they are the first pair to be developed. In the common sea-anemone, Actinia equina (which has already been quoted as a type of Anthozoan structure), the mesenteries are numerous and are arranged in cycles. The mesenteries of the first cycle are complete {i.e., are attached to the stomodaeum), are twelve in number, and arranged in couples, distinguishable by the position of the muscle-banners. In the four couples of mesenteries which are attached to the sides of the elongated stomodaeum the muscle - banners of each couple are turned towards one another, but in the sulcar and sulcular couples, known as the directive mesenteries, the muscle-banners are on the outer faces of the mesenteries, and so are turned away from one another (see Fig. 10, C). The space enclosed between two mesen-

Fig. 10. — A, Edwardsia claparedii (after A. Andres), cap, capitulum; scr. scapus; ph, physa. B, Transverse section of the same, showing the arrangement of the mesenteries, s, sulcus ; si, sulculus. C, Transverse section of Halcampa. d, d, directive mesenteries ; st, stomodeeum. teries of the same couple is called an entocoele; the space enclosed between two mesenteries of adjacent couples is called an exoccele. The second cycle of mesenteries consists of six couples, each formed in an exoccele of the primary cycle, and in each couple the musclebanners are vis-d-vis. The third cycle comprises twelve couples, each formed in an exoccele between the primary and secondary couples, and so on, it being a general rule (subject, however, to exceptions) that new mesenterial couples are always formed in the exocceles, and not in the entocceles. While the mesenterial couples belonging to the second and each successive cycle are formed simultaneously, those of the first cycle are formed in successive pairs, each member of a pair being placed on opposite sides of the stomodamm. Hence the arrangement in six couples is a secondary and not a primary feature. In most Actinians the mesenteries appear in the following order:—At the time when the stomodseum is formed, a single pair of mesenteries, marked I, I in the diagram (Fig. 11, A), makes its appearance, dividing the coelenteric cavity into a smaller sulcar and a large sulcular chamber. The muscle - banners of this pair are placed on the sulcar faces of the mesenteries. Next, a pair of mesenteries, marked II, II in the diagram, is developed in the sulcular chamber, its muscle-banners facing the same way as those of I, I. The third pair is formed in the sulcar chamber, in close connexion with the sulcus, and in this case the muscle-banners are on the sulcular faces. The fourth pair, having its muscle-banners on the sulcar faces, is developed at the opposite extremity of the stomodreum in close connexion with the sulculus. There are now eight mesenteries present, having exactly the same arrangement as in Edwardsia. A pause in the development follows, during which no new mesenteries are formed, and then the six-rayed symmetry characteristic of a normal Actinian zooid is completed by the formation of the mesenteries Y, V in the lateral chambers, and VI, VI in the sulcolateral chambers, their muscle - banners being - so disposed that they form couples respectively with II, II and I, I. In Actinia S. I.—58