Page:A History of Mathematics (1893).djvu/248

From Wikisource
Jump to navigation Jump to search
This page has been proofread, but needs to be validated.
NEWTON TO EULER.
229

close. Nothing material happened till 1684, when Leibniz published his first paper on the differential calculus in the Leipzig Acts, so that while Newton's claim to the priority of invention must be admitted by all, it must also be granted that Leibniz was the first to give the full benefit of the calculus to the world. Thus, while Newton's invention remained a secret, communicated only to a few friends, the calculus of Leibniz was spreading over the Continent. No rivalry or hostility existed, as yet, between the illustrious scientists. Newton expressed a very favourable opinion of Leibniz's inventions, known to him through the above correspondence with Oldenburg, in the following celebrated scholium (Principia, first edition, 1687, Book II., Prop. 7, scholium):—

"In letters which went between me and that most excellent geometer, G. G. Leibniz, ten years ago, when I signified that I was in the knowledge of a method of determining maxima and minima, of drawing tangents, and the like, and when I concealed it in transposed letters involving this sentence (Data æquatione, etc., above cited), that most distinguished man wrote back that he had also fallen upon a method of the same kind, and communicated his method, which hardly differed from mine, except in his forms of words and symbols."

As regards this passage, we shall see that Newton was afterwards weak enough, as De Morgan says: "First, to deny the plain and obvious meaning, and secondly, to omit it entirely from the third edition of the Principia." On the Continent, great progress was made in the calculus by Leibniz and his coadjutors, the brothers James and John Bernoulli, and Marquis de l'Hospital. In 1695 Wallis informed Newton by letter that "he had heard that his notions of fluxions passed in Holland with great applause by the name of 'Leibniz's Calculus Differentialis.'" Accordingly Wallis stated in the preface to a volume of his works that the calculus differen-