706.]
COIL OF MAXIMUM SELF-INDUCTION.
311
From the general equation of
M
{\displaystyle M}
, Art. 703,
d
2
M
d
x
2
+
d
2
M
d
y
2
−
1
a
+
x
d
M
d
x
=
0
{\displaystyle {\frac {d^{2}M}{dx^{2}}}+{\frac {d^{2}M}{dy^{2}}}-{\frac {1}{a+x}}{\frac {dM}{dx}}=0}
,
we obtain another set of conditions,
2
A
2
+
2
A
2
′
=
A
1
{\displaystyle 2A_{2}+2A_{2}^{\prime }=A_{1}}
,
2
A
2
+
A
2
′
+
6
A
3
+
2
A
3
′
=
2
A
2
{\displaystyle 2A_{2}+A_{2}^{\prime }+6A_{3}+2A_{3}^{\prime }=2A_{2}}
;
n
(
n
−
1
)
A
n
+
(
n
+
1
)
n
A
n
+
1
+
1.2
A
n
′
+
1.2
A
n
+
1
′
=
n
A
n
{\displaystyle n(n-1)A_{n}+(n+1)nA_{n+1}+1.2A_{n}^{\prime }+1.2A_{n+1}^{\prime }=nA_{n}}
,
(
n
−
1
)
(
n
−
2
)
A
n
′
+
n
(
n
−
1
)
A
n
+
1
′
+
2.3
A
n
′
′
+
2.3
A
n
+
1
′
′
=
(
n
−
2
)
A
n
′
{\displaystyle (n-1)(n-2)A_{n}^{\prime }+n(n-1)A_{n+1}^{\prime }+2.3A_{n}^{\prime \prime }+2.3A_{n+1}^{\prime \prime }=(n-2)A_{n}^{\prime }}
,
&c.;
4
A
2
+
{\displaystyle 4A_{2}+{}}
A
1
=
{\displaystyle A_{1}={}}
2
B
2
+
2
B
2
′
−
B
1
=
4
A
2
′
{\displaystyle 2B_{2}+2B_{2}^{\prime }-B_{1}=4A_{2}^{\prime }}
,
6
A
3
+
{\displaystyle 6A_{3}+{}}
3
A
2
=
{\displaystyle 3A_{2}={}}
2
B
2
′
+
6
B
3
+
2
B
3
′
=
6
A
3
′
+
3
A
2
′
{\displaystyle 2B_{2}^{\prime }+6B_{3}+2B_{3}^{\prime }=6A_{3}^{\prime }+3A_{2}^{\prime }}
,
(
2
n
−
1
)
A
n
+
(
2
n
+
2
)
A
n
+
1
{\displaystyle (2n-1)A_{n}+(2n+2)A_{n+1}}
=
n
(
n
−
2
)
B
n
+
(
n
+
1
)
n
B
n
+
1
+
1.2
B
n
′
+
1.2
B
n
+
1
′
{\displaystyle {}=n(n-2)B_{n}+(n+1)nB_{n+1}+1.2B_{n}^{\prime }+1.2B_{n+1}^{\prime }}
,
Solving these equations and substituting the values of the coefficients, the series for
M
{\displaystyle M}
becomes
M
=
4
π
a
log
8
a
r
{\displaystyle M=4\pi a\log {\frac {8a}{r}}}
{
1
+
1
2
x
a
+
x
2
+
3
y
2
16
a
2
−
x
3
+
3
x
y
2
32
a
3
+
&
c
.
}
{\displaystyle \left\{1+{\frac {1}{2}}{\frac {x}{a}}+{\frac {x^{2}+3y^{2}}{16a^{2}}}-{\frac {x^{3}+3xy^{2}}{32a^{3}}}+\mathrm {\&c.} \right\}}
+
4
π
a
{
−
2
−
1
2
x
a
+
3
x
2
−
y
2
16
a
2
−
x
3
−
6
x
y
2
48
a
3
+
&
c
.
}
{\displaystyle +4\pi a\left\{-2-{\frac {1}{2}}{\frac {x}{a}}+{\frac {3x^{2}-y^{2}}{16a^{2}}}-{\frac {x^{3}-6xy^{2}}{48a^{3}}}+\mathrm {\&c.} \right\}}
.
To find the form of a coil for which the coefficient of self-induction is a maximum, the total length and thickness of the wire being given.
706.] Omitting the corrections of Art. 705, we find by Art. 673
L
=
4
π
n
2
a
(
log
8
a
R
−
2
)
{\displaystyle L=4\pi n^{2}a\left(\log {\frac {8a}{R}}-2\right)}
,
where
n
{\displaystyle n}
is the number of windings of the wire,
a
{\displaystyle a}
is the mean radius of the coil, and
R
{\displaystyle R}
is the geometrical mean distance of the transverse section of the coil from itself. See Art. 690. If this section is always similar to itself,
R
{\displaystyle R}
is proportional to its linear dimensions, and
n
{\displaystyle n}
varies as
R
2
{\displaystyle R^{2}}
.
Since the total length of the wire is
2
π
a
n
{\displaystyle 2\pi an}
,
a
{\displaystyle a}
varies inversely as
n
{\displaystyle n}
. Hence
d
n
n
=
2
d
R
R
{\displaystyle {\frac {dn}{n}}=2{\frac {dR}{R}}}
, and
d
a
a
=
−
2
d
R
R
{\displaystyle {\frac {da}{a}}=-2{\frac {dR}{R}}}
,
and we find the condition that
L
{\displaystyle L}
may be a maximum
log
8
a
R
=
7
2
{\displaystyle \log {\frac {8a}{R}}={\frac {7}{2}}}
.