Page:A history of the theories of aether and electricity. Whittacker E.T. (1910).pdf/401

From Wikisource
Jump to navigation Jump to search
This page has been proofread, but needs to be validated.
from Faraday to J. J. Thomson
381

rapidly increasing—e.g., a dropping electrode; that is to say, the difference of potential between an ordinary mercury electrode and the electrolyte, when the surface-tension has its maximum value, is equal to the difference of potential between a dropping-electrode and the same electrolyte. This result has been experimentally verified by various investigators, who have shown that the applied electromotive force when the surface-tension has its maximum value in the capillary electrometer, is equal to the electromotive force of a cell having as electrodes a large mercury electrode and a dropping electrode.

Another memoir which belongs to the same period of Helmholtz' career, and which has led to important developments, was concerned with a special class of voltaic cells. The most usual type of cell is that in which the positive electrode is composed of a different metal from the negative electrode, and the evolution of energy depends on the difference in the chemical affinities of these metals for the liquids in the cell. But in the class of cells now considered[1] by Helmholtz, the two electrodes are composed of the same metal (say, copper); and the liquid (say, solution of copper sulphate) is more concentrated in the neighbourhood of one electrode than in the neighbourhood of the other. When the cell is in operation, the salt passes from the places of high concentration to the places of low concentration, so as to equalize its distribution, and this process is accompanied by the flow of a current in the outer circuit between the electrodes. Such cells had been studied experimentally by James Moser a short time previously[2] to Helmholtz' investigation.

The activity of the cell is due to the fact that the available energy of a solution depends on its concentration, the molecules

    of mercury, until the upper layer of the solution is so much impoverished that the double layer can no longer be formed. The impoverishment of the upper layer of the solution has actually been observed by Palmaer, Zeitsch. Phys. Chem. xxv (1898), p. 265; xxviii (1899), p. 257; xxxvi (1901), p. 664.

  1. Berlin Monatsber., 1877, p. 713; Phil. May (5) v (1878), p. 348; reprinted with additions in Ann. d. Phys. iii (1878), p. 201.
  2. Ann. d. Phys. iii (1878), p. 216.