Page:A philosophical essay on probabilities Tr. Truscott, Emory 1902.djvu/55

From Wikisource
Jump to navigation Jump to search
This page has been proofread, but needs to be validated.
THE CALCULUS OF PROBABILITIES.
45

This term is then the limit of the series and expresses in differential calculus the infinitely small nth difference of the function divided by the nth power of the infinitely small increase.

Considering from this point of view the infinitely small differences, we see that the various operations of differential calculus amount to comparing separately in the development of identical expressions the finite terms or those independent of the increments of the variables which are regarded as infinitely small; this is rigorously exact, these increments being indeterminant. Thus differential calculus has all the exactitude of other algebraic operations.

The same exactitude is found in the applications of differential calculus to geometry and mechanics. If we imagine a curve cut by a secant at two adjacent points, naming E the interval of the ordinates of these two points, E will be the increment of the abscissa from the first to the second ordinate. It is easy to see that the corresponding increment of the ordinate will be the product of E by the first ordinate divided by its subsecant; augmenting then in this equation of the curve the first ordinate by this increment, we shall have the equation relative to the second ordinate. The difference of these two equations will be a third equation which, developed by the ratio of the powers of E and divided by E, will have its first term independent of E, which will be the limit of this development. This term, equal to zero, will give then the limit of the subsecants, a limit which is evidently the subtangent.

This singularly happy method of obtaining the subtangent is due to Fermat, who has extended it to