Page:A philosophical essay on probabilities Tr. Truscott, Emory 1902.djvu/71

From Wikisource
Jump to navigation Jump to search
This page has been proofread, but needs to be validated.
INDEFINITE MULTIPLICATION OF EVENTS.
61

mutually in the totality of a great number of draws, allowing us to perceive more and more the ratio of white balls to the black balls contained in the urn, or the respective possibilities of drawing a white ball or black ball at each draw. From this results the following theorem.

The probability that the ratio of the number of white balls drawn to the total number of balls drawn does not deviate beyond a given interval from the ratio of the number of white balls to the total number of balls contained in the urn, approaches indefinitely to certainty by the indefinite multiplication of events, however small this interval.

This theorem indicated by common sense was difficult to demonstrate by analysis. Accordingly the illustrious geometrician Jacques Bernouilli, who first has occupied himself with it, attaches great importance to the demonstrations he has given. The calculus of discriminant functions applied to this matter not only demonstrates with facility this theorem, but still more it gives the probability that the ratio of the events observed deviates only in certain limits from the true ratio of their respective possibilities.

One may draw from the preceding theorem this consequence which ought to be regarded as a general law, namely, that the ratios of the acts of nature are very nearly constant when these acts are considered in great number. Thus in spite of the variety of years the sum of the productions during a considerable number of years is sensibly the same; so that man by useful foresight is able to provide against the irregularity of the seasons by spreading out equally over all the