Page:A short history of astronomy(1898).djvu/157

From Wikisource
Jump to navigation Jump to search
This page has been validated.
§§ 83—85]
Precession
111

Of much more interest than the detailed discussion of trepidation and of geometrical schemes for representing it is the interpretation of precession as the result of a motion of the earth's axis. Precession was originally recognised by Hipparchus as a motion of the celestial equator, in which its inclination to the ecliptic was sensibly unchanged. Now the ideas of Coppernicus make the celestial equator dependent On the equator of the earth, and hence on its axis; it is in fact a great circle of the celestial sphere which is always perpendicular to the axis about which the earth rotates daily. Hence precession, on the theory of Coppernicus, arises from a slow motion of the axis of the earth, which moves so as always to remain inclined at the same angle to the ecliptic, and to return to its original position after a period of about 26,000 years (since a motion of 50"⋅2 annually is equivalent to 360° or a complete circuit in that period); in other words, the earth's axis has a slow conical motion, the central line (or axis) of the cone being at right angles to the plane of the ecliptic.

85. Precession being dealt with, the greater part of the remainder of the third book is devoted to a discussion in detail of the apparent annual motion of the sun round the earth, corresponding to the real annual motion of the earth round the sun. The geometrical theory of the Almagest was capable of being immediately applied to the new system, and Coppernicus, like Ptolemy, uses an eccentric. He makes the calculations afresh, arrives at a smaller and more accurate value of the eccentricity (about 1/31 instead of 1/24), fixes the position of the apogee and perigee (chapter ii., § 39), or rather of the equivalent aphelion and perihelion (i.e. the points in the earth's orbit where it is respectively farthest from and nearest to the sun), and thus verifies Albategnius's discovery (chapter iii., § 59) of the motion of the line of apses. The theory of the earth's motion is worked out in some detail, and tables are given whereby the apparent place of the sun at any time can be easily computed.

The fourth book deals with the theory of the moon. As has been already noticed, the moon was the only celestial body the position of which in the universe was substantially unchanged by Coppernicus, and it might hence have been expected that little alteration would have been required in