Page:A short history of astronomy(1898).djvu/216

From Wikisource
Jump to navigation Jump to search
This page has been validated.
164
A Short History of Astronomy
[Ch. VI.

enough if the stars are regarded as rigidly attached to a material sphere, is shewn in a quite different aspect if, as even Simplicio admits, no such sphere exists, and each star moves in some sense independently. A star near the pole must then be supposed to move far more slowly than one near the equator, since it describes a much smaller circle in the same time; and further—an argument very characteristic of Galilei's ingenuity in drawing conclusions from known facts—owing to the precession of the equinoxes (chapter ii., § 42, and iv., § 84) and the consequent change of the position of the pole among the stars, some of those stars which in Ptolemy's time were describing very small circles, and therefore moving slowly, must now be describing large ones at a greater speed, and vice versa. An extremely complicated adjustment of motions becomes therefore necessary to account for observations which Coppernicus explained adequately by the rotation of the earth and a simple displacement of its axis of rotation.

Salviati deals also with the standing difficulty that the annual motion of the earth ought to cause a corresponding apparent motion of the stars, and that if the stars be assumed so far off that this motion is imperceptible, then some of the stars themselves must be at least as large as the earth's orbit round the sun. Salviati points out that the apparent or angular magnitudes of the fixed stars, avowedly difficult to determine, are in reality almost entirely illusory, being due in great part to an optical effect known as irradiation, in virtue of which a bright object always tends to appear enlarged;[1] and that there is in consequence no reason to suppose the stars nearly as large as they might otherwise be thought to be. It is suggested also that the most promising way of detecting the annual motion of stars resulting from the motion of the earth would be by observing the relative displacement of two stars close together in the sky (and therefore nearly in the same direction), of which one might be presumed from its greater

  1. This is illustrated by the well-known optical illusion whereby a white circle on a black background appears larger than an equal black one on a white background. The apparent size of the hot filament in a modern incandescent electric lamp is another good illustration.