Page:A short history of astronomy(1898).djvu/218

From Wikisource
Jump to navigation Jump to search
This page has been validated.
166
A Short History of Astronomy
[Ch. VI.

some other assignable cause. Thus a stone thrown along a road comes to rest on account of the friction between it and the ground, a ball thrown up into the air ascends more and more slowly and then falls to the ground on account of that attraction of the earth on it which we call its weight. As it is impossible to entirely isolate a body from all others, we cannot experimentally realise the state of things in which a body goes on moving indefinitely in the same direction and at the same rate; it may, however, be shewn that the more we remove a body from the influence of others, the less alteration is there in its motion. The law is therefore, like most scientific laws, an abstraction referring to a state of things to which we may approximate in nature. Galilei introduces the idea in the Dialogue by means of a ball on a smooth inclined plane. If the ball is projected upwards, its motion is gradually retarded; if downwards, it is continually accelerated. This is true if the plane is fairly smooth—like a well-planed plank—and the inclination of the plane not very small. If we imagine the experiment performed on an ideal plane, which is supposed perfectly smooth, we should expect the same results to follow, however small the inclination of the plane. Consequently, if the plane were quite level, so that there is no distinction between up and down, we should expect the motion to be neither retarded nor accelerated, but to continue without alteration. Other more familiar examples are also given of the tendency of a body, when once in motion, to continue in motion, as in the case of a rider whose horse suddenly stops, or of bodies in the cabin of a moving ship which have no tendency to lose the motion imparted to them by the ship, so that, e.g., a body falls down to all appearances exactly as if the rest of the cabin were at rest, and therefore, in reality, while falling retains the forward motion which it shares with the ship and its contents. Salviati states also that—contrary to general belief—a stone dropped from the masthead of a ship in motion falls at the foot of the mast, not behind it, but there is no reference to the experiment having been actually performed.

This mechanical principle being once established, it becomes easy to deal with several common objections to