Page:A short history of astronomy(1898).djvu/273

From Wikisource
Jump to navigation Jump to search
This page has been validated.
§§ 169, 170]
First Discoveries: Gravity
213
was in the two plague years of 1665 and 1666, for in those days I was in the prime of my age for invention, and minded Mathematicks and Philosophy more than at any time since."[1]

170. He spent a considerable part of this time (1665-1666) at Woolsthorpe, on account of the prevalence of the plague.

The well-known story, that he was set meditating on gravity by the fall of an apple in the orchard, is based on good authority, and is perfectly credible in the sense that the apple may have reminded him at that particular time of certain problems connected with gravity. That the apple seriously suggested to him the existence of the problems or any key to their solution is wildly improbable.

Several astronomers had already speculated on the "cause" of the known motions of the planets and satellites; that is they had attempted to exhibit these motions as consequences of some more fundamental and more general laws. Kepler, as we have seen (chapter vii., § 150), had pointed out that the motions in question should not be considered as due to the influence of mere geometrical points, such as the centres of the old epicycles, but to that of other bodies; and in particular made some attempt to explain the motion of the planets as due to a special kind of influence emanating from the sun. He went, however, entirely wrong by looking for a force to keep up the motion of the planets and as it were push them along. Galilei's discovery that the motion of a body goes on indefinitely unless there is some cause at work to alter or stop it, at once put a new aspect on this as on other mechanical problems; but he himself did not develop his idea in this particular direction. Giovanni Alfonso Borelli (1608-1679), in a book on Jupiter's satellites published in 1666, and therefore about the time of Newton's first work on the subject, pointed out that a body revolving in a circle (or similar curve) had a tendency to recede from the centre, and that in the case of the planets this might be supposed to be counteracted by some kind of attraction towards the sun. We have then here the idea—

  1. From a MS. among the Portsmouth Papers, quoted in the Preface to the Catalogue of the Portsmouth Papers.