Page:A short history of astronomy(1898).djvu/289

From Wikisource
Jump to navigation Jump to search
This page has been validated.
§§ 182, 183]
Universal Gravitation
229

density throughout, different shells being, however, of different densities. For example, the result is true for a hollow indiarubber ball as well as for a solid one, but is not true for a sphere made up of a hemisphere of wood and a hemisphere of iron fastened together.

183. The law of gravitation being thus provisionally established, the great task which lay before Newton, and to which he devotes the greater part of the first and third books of the Principia, was that of deducing from it and the "laws of motion" the motions of the various members of the solar system, and of shewing, if possible, that the motions so calculated agreed with those observed. If this were successfully done, it would afford a verification of the most delicate and rigorous character of Newton's principles.

The conception of the solar system as a mechanism, each member of which influences the motion of every other member in accordance with one universal law of attraction, although extremely simple in itself, is easily seen to give rise to very serious difficulties when it is proposed actually to calculate the various motions. If in dealing with the motion of a planet such as Mars it were possible to regard Mars as acted on only by the attraction of the sun, and to ignore the effects of the other planets, then the problem would be completely solved by the propositions which Newton established in 1679 (§ 175) and by their means the position of Mars at any time could be calculated with any required degree of accuracy. But in the case which actually exists the motion of Mars is affected by the forces with which all the other planets (as well as the satellites) attract it, and these forces in turn depend on the position of Mars (as well as upon that of the other planets) and hence upon the motion of Mars. A problem of this kind in all its generality is quite beyond the powers of any existing mathematical methods. Fortunately, however, the mass of even the largest of the planets is so very much less than that of the sun, that the motion of any one planet is only slightly affected by the others; and it may be regarded as moving very nearly as it would move if the other planets did not exist, the effect of these being afterwards allowed for as producing disturbances or perturbations in its path. Although even in this simplified form the problem of the