Page:A short history of astronomy(1898).djvu/293

From Wikisource
Jump to navigation Jump to search
This page has been validated.
§ 187]
Relative Motion: the Shape of the Earth

187. The variation of the time of oscillation of a pendulum in different parts of the earth, discovered by Richer in 1672 (chapter viii., § 161), indicated that the earth was probably not a sphere. Newton pointed out that this departure from the spherical form was a consequence of the mutual gravitation of the particles making up the earth and of the earth's rotation. He supposed a canal of water to pass from the pole to the centre of the earth, and then from the centre to a point on the equator (b o a a in fig. 72), and then found the condition that these two columns of water o b, o a, each being attracted towards the centre of the earth, should balance. This method involved certain assumptions as to the inside of the earth, of which little can be said to be known even now, and consequently, though Newton's general result, that the earth is flattened at the poles and bulges out at the equator, was right, the actual numerical expression which he found was not very accurate. If, in the figure, the dotted line is a circle the radius of which is equal to the distance of the

    those bodies. If, for example, we look at Newton's First Law of Motion (chapter vi., § 130), we see that it has no meaning, unless we know what are the body or bodies relative to which the motion is being expressed; a body at rest relatively to the earth is moving relatively to the sun or to the fixed stars, and the applicability of the First Law to it depends therefore on whether we are dealing with its motion relatively to the earth or not. For most terrestrial motions it is sufficient to regard the Laws of Motion as referring to motion relative to the earth; or, in other words, we may for this purpose treat the earth as "fixed." But if we examine certain terrestrial motions more exactly, we find that the Laws of Motion thus interpreted are not quite true; but that we get a more accurate explanation of the observed phenomena if we regard the Laws of Motion as referring to motion relative to the centre of the sun and to lines drawn from it to the stars; or, in other words, we treat the centre of the sun as a "fixed" point and these lines as "fixed" directions. But again when we are dealing with the solar system generally this interpretation is slightly inaccurate, and we have to treat the centre of gravity of the solar system instead of the sun as "fixed."

    From this point of view we may say that Newton's object in the Principia was to shew that it was possible to choose a certain point (the centre of gravity of the solar system) and certain directions (lines joining this point to the fixed stars), as a base of reference, such that all motions being treated as relative to this base, the Laws of Motion and the law of gravitation afford a consistent explanation of the observed motions of the bodies of the solar system.