Page:A short history of astronomy(1898).djvu/331

From Wikisource
Jump to navigation Jump to search
This page has been validated.
§ 213]
Nutation
267

whole annual precession, which arises from her action, would in different years be varied in its quantity; whereas the plane of the ecliptic, wherein the sun appears, keeping always nearly the same inclination to the equator, that part of the precession which is owing to the sun's action may be the same every year; and from hence it would follow, that although the mean annual precession, proceeding from the joint actions of the sun and moon, were 50", yet the apparent annual precession might sometimes exceed and sometimes fall short of that mean quantity, according to the various situations of the nodes of the moon's orbit."

Newton in his discussion of precession (chapter ix., § 188; Principia, Book III., proposition 21) had pointed out the existence of a small irregularity with a period of six months. But it is evident, on looking at this discussion of the effect of the solar and lunar attractions on the protuberant parts of the earth, that the various alterations in the positions of the sun and moon relative to the earth might be expected to produce irregularities, and that the uniform precessional motion known from observation and deduced from gravitation by Newton was, as it were, only a smoothing out of a motion of a much more complicated character. Except for the allusion referred to, Newton made no attempt to discuss these irregularities, and none of them had as yet been detected by observation.

Of the numerous irregularities of this class which are now known, and which may be referred to generally as nutation, that indicated by Bradley in the passage just quoted is by far the most important. As soon as the idea of an irregularity depending on the position of the moon's nodes occurred to him, he saw that it would be desirable to watch the motions of several stars during the whole period (about 19 years) occupied by the moon's nodes in performing the circuit of the ecliptic and returning to the same position. This inquiry was successfully carried out between 1727 and 1747 with the telescope mounted at Wansted. When the moon's nodes had performed half their revolution, i.e. after about nine years, the correspondence between the displacements of the stars and the changes in the moon's orbit was so close that Bradley was satisfied with the general correctness of his theory, and in 1737 he communicated the result privately to Maupertuis (§ 221), with whom he had