Page:A short history of astronomy(1898).djvu/391

From Wikisource
Jump to navigation Jump to search
This page has been validated.
§ 250]
The Nebular Hypothesis
321

eccentricities of all the orbits were quite small, so that they were nearly circular.

Comets, on the other hand, presented none of these peculiarities; their paths were very eccentric, they were inclined at all angles to the ecliptic, and were described in either direction.

Moreover there were no known bodies forming a connecting link in these respects between comets and planets or satellites.[1]

From these remarkable coincidences Laplace inferred that the various bodies of the solar system must have had some common origin. The hypothesis which he suggested was that they had condensed out of a body that might be regarded either as the sun with a vast atmosphere filling the space now occupied by the solar system, or as a fluid mass with a more or less condensed central part or nucleus; while at an earlier stage the central condensation might have been almost non-existent.

Observations of Herschel's (chapter xii., §§ 259—61) had recently revealed the existence of many hundreds of bodies known as nebulae, presenting very nearly such appearances as might have been expected from Laplace's primitive body. The differences in structure which they shewed, some being apparently almost structureless masses of some extremely diffused substance, while others shewed decided signs of central condensation, and others again looked like ordinary stars with a slight atmosphere round them, were also strongly suggestive of successive stages in some process of condensation.

Laplace's suggestion then was that the solar system had been formed by condensation out of a nebula; and a similar explanation would apply to the fixed stars, with the planets (if any) which surrounded them.

He then sketched, in a somewhat imaginative way, the process whereby a nebula, if once endowed with a rotatory motion, might, as it condensed, throw off a series of rings,

  1. This statement again has to be modified in consequence of the discoveries, beginning on January 1st, 1801, of the minor planets (chapter xiii., § 294), many of which have orbits that are far more eccentric than those of the other planets and are inclined to the ecliptic at considerable angles.
21