Page:A short history of astronomy(1898).djvu/441

From Wikisource
Jump to navigation Jump to search
This page has been validated.
§ 287]
Lunar Theory
369

New methods of dealing with lunar theory were devised by the late Professor John Couch Adams of Cambridge (1819–1892), and similar methods have been developed by Dr. G. W. Hill of Washington; so far they have not been worked out in detail in such a way as to be available for the calculation of tables, and their interest seems to be at present mathematical rather than practical; but the necessary detailed work is now in progress, and these and allied methods may be expected to lead to a considerable diminution of the present excessive intricacy of lunar theory.

287. One special point in lunar theory may be worth mentioning. The secular acceleration of the moon's mean motion which had perplexed astronomers since its first discovery by Halley (chapter x., § 201) had, as we have seen (chapter xi., § 240), received an explanation in 1787 at the hands of Laplace. Adams, on going through the calculation, found that some quantities omitted by Laplace as unimportant had in reality a very sensible effect on the result, so that a certain quantity expressing the rate of increase of the moon's motion came out to be between 5" and 6", instead of being about 10", as Laplace had found and as observation required. The correction was disputed at first by several of the leading experts, but was confirmed independently by Delaunay and is now accepted. The moon appears in consequence to have a certain very minute increase in speed for which the theory of gravitation affords no explanation. An ingenious though by no means certain explanation was suggested by Delaunay in 1865. It had been noticed by Kant that tidal friction—that is, the friction set up between the solid earth and the ocean as the result of the tidal motion of the latter—would have the effect of checking to some extent the rotation of the earth; but as the effect seemed to be excessively minute and incapable of precise calculation it was generally ignored. An attempt to calculate its amount was, however, made in 1853 by William Ferrel, who also pointed out that, as the period of the earth's rotation—the day—is our fundamental unit of time, a reduction of the earth's rate of rotation involves the lengthening of our unit of time, and consequently produces an apparent increase of speed in all other motions

24