Page:A short history of astronomy(1898).djvu/475

From Wikisource
Jump to navigation Jump to search
This page has been validated.
§ 302]
Solar Spectroscopy: Doppler's Principle
391

Professor Harkness and Professor C. A. Young, who discovered a bright line—of unknown origin[1]—in its spectrum, thus shewing that it consists in part of glowing gas. Subsequent spectroscopic work shews that its light is partly reflected sunlight.

The corona has been carefully studied at every solar eclipse during the last 30 years, both with the spectroscope and with the telescope, supplemented by photography, and a number of ingenious theories of its constitution have been propounded; but our present knowledge of its nature hardly goes beyond Professor Young's description of it as "an inconceivably attenuated cloud of gas, fog, and dust, surrounding the sun, formed and shaped by solar forces."

302. The spectroscope also gives information as to certain motions taking place on the sun. It was pointed out in 1842 by Christian Doppler (1803–1853), though in an imperfect and partly erroneous way, that if a luminous body is approaching the observer, or vice versa, the waves of light are as it were crowded together and reach the eye at shorter intervals than if the body were at rest, and that the character of the light is thereby changed. The colour and the position in the spectrum both depend on the interval between one wave and the next, so that if a body giving out light of a particular wave-length, e.g. the blue light corresponding to the F line of hydrogen, is approaching the observer rapidly, the line in the spectrum appears slightly on one side of its usual position, being displaced towards the violet end of the spectrum; whereas if the body is receding the line is, in the same way, displaced in the opposite direction. This result is usually known as Doppler's principle. The effect produced can easily be expressed numerically. If, for example, the body is approaching with a speed equal to 1/1000 that of light, then 1001 waves enter the eye or the spectroscope in the same time in which there would other- wise only be 1000; and there is in consequence a virtual shortening of the wave-length in the ratio of 1001 to 1000. So that if it is found that a line in the spectrum of a body is displaced from its ordinary position in such

  1. The discovery of a terrestrial substance with this line in its spectrum has been announced while this book has been passing through the press.