Page:Alan Turing - Proposed Electronic Calculator (1945).pdf/17

From Wikisource
Jump to navigation Jump to search
This page has been proofread, but needs to be validated.

– 16 –

Problem 10.— Given a position in chess the machine could be made to list all the ‘winning combinations’ to a depth of about three moves on either side. This is not unlike the previous problem, but raises the question ‘Can the machine play chess?’ It could fairly easily be made to play a rather bad game. It would be bad because chess requires intelligence. We stated at the beginning of this section that the machine should be treated as entirely without intelligence. There are indications however that it is possible to make the machine display intelligence at the risk of its making occasional serious mistakes. By following up this aspect the machine could probably be made to play very good chess.


9. Checking.

It will be almost our most serious problem to make sure that the calculator is doing what it should. We may perhaps distinguish between three kinds of error.

(1) Permanent faults that have developed in the wiring or components, e.g. condensers that have become open circuit.

(2) Temporary errors due to interference, noise reaching unexpected levels, unusual combinations of voltages at some point in the circuit, etc.

(3) Errors due to the use of incorrect instruction tables, or even due to mistaken views as to what the circuit should do.

It will be our intention to install monitoring circuits to detect errors of form (1) fairly soon. The ideal to aim at should be that each conceivable form of failure would give a different indication on the monitor. In practice we should probably simply localise the error to some part, e.g. an adder, which could be changed and then examined at leisure.

Errors of type (2) should not occur when the apparatus is in proper working order, however when a component is beginning to age its deficiencies will often show themselves first in this sort of way. For instance, if the emission of a valve in a Kipp relay circuit is beginning to fail it will eventually not pass on any of the pulses it should, but this will begin with some occasional failures to react. The worst of this can probably be eliminated by frequent test runs in which the conditions of H.T. volts, interference, etc., are all modified in a way calculated to accentuate the deficiencies of the components. Those which are rather down at heel may then be removed, and when the conditions are restored to normal there should be a good margin of safety. We cannot of course rely on this 100%. We need a second string. This will be provided by a variety of checks of the types normally employed in computing, i.e. wherever we can find a simple identity which should be satisfied by the results of our calculations we shall verify it. For instance, if we were multiplying polynomials algebraically we should check by taking a particular value for the variable. If we were calculating the values of an analytic function at equal intervals we should check by differencing. Most of these checks will have to be set up as part of the instruction tables, and the appropriate action to be taken will also be put into them. A few checks will be made part of the circuit. For instance, all multiplications and additions will be checked by repeating them modulo 255.

Incorrect instruction tables (3) will often be shown up by the checks which have been put into these same instruction tables. We may also apply a special check whenever we have made up a new instruction table, by comparing the results with the same job done by

moans/