Page:Amusements in mathematics.djvu/171

From Wikisource
Jump to navigation Jump to search
This page has been proofread, but needs to be validated.
SOLUTIONS.
159

that such combinations as 98+2, 92+8, 86+14, 83+17, 74+26, etc., etc., are to be at once dismissed as impossible, the reason is not so evident, and I misortunately cannot spare space to explain it.

But when all those combinations have been struck out that are known to be impossible, it does not follow that all the remaining "possible forms" will actually work. The elemental form may be right enough, but there are other and deeper considerations that creep in to defeat our attempts. For example, 98+2 is an impossible combination, because we are able to say at once that there is no possible form for the digital roots of the fraction equal to 2. But in the case of 97+3 there is a possible form for the digital roots of the fraction, namely, 6-5, and it is only on further investigation that we are able to determine that this form cannot in practice be obtained, owing to curious considerations. The working is greatly simplified by a process of elimination, based on such considerations as that certain multiplications produce a repetition of figures, and that the whole number cannot be from 12 to 23 inclusive, since in every such case sufficiently small denominators are not available for forming the fractional part.

91.—MORE MIXED FRACTIONS.

The point of the present puzzle lies in the fact that the numbers 15 and 18 are not capable of solution. There is no way of determining this without trial. Here are answers for the ten possible numbers:—

9 5472/1368 = 13; 9 6435/1287 = 14;
12 3576/894 = 16; 6 13258/947 = 20;
15 9432/786 = 27; 24 9756/813 = 36;

I have only found the one arrangement for each of the numbers 16, 20, and 27; but the other numbers are all capable of being solved in more than one way. As for 15 and 18, though these may be easily solved as a simple fraction, yet a "mixed fraction" assumes the presence of a whole number; and though my own idea for dodging the conditions is the following, where the fraction is both complex and mixed, it will be fairer to keep exactly to the form indicated:—

3 3952 =15;
746
1
9 5742 =18.
638
1

I have proved the possibility of solution for all numbers up to 100, except 1, 2, 3, 4, 15, and 18. The first three are easily shown to be impossible. I have also noticed that numbers whose digital root is 8—such as 26, 35, 44, 53, etc.—seem to lend themselves to the greatest number of answers. For the number 26 alone I have recorded no fewer than twenty-five different arrangements, and I have no doubt that there are many more.

92.—DIGITAL SQUARE NUMBERS.

So far as I know, there are no published tables of square numbers that go sufficiently high to be available for the purposes of this puzzle. The lowest square number containing all the nine digits once, and once only, is 139,854,276, the square of 11,826. The highest square number under the same conditions is, 923,187,456, the square of 30,384.

93.—THE MYSTIC ELEVEN.

Most people know that if the sum of the digits in the odd places of any number is the same as the sum of the digits in the even places, then the number is divisible by 11 without remainder. Thus in 896743012 the odd digits, 20468, add up 20, and the even digits, 1379, also add up 20. Therefore the number may be divided by 11. But few seem to know that if the difference between the sum of the odd and the even digits is II, or a multiple of 11, the rule equally applies. This law enables us to find, with a very little trial, that the smallest number containing nine of the ten digits (calling nought a digit) that is divisible by 11 is 102,347,586, and the highest number possible, 987,652,413.

94.—THE DIGITAL CENTURY.

There is a very large number of different ways in which arithmetical signs may be placed between the nine digits, arranged in numerical order, so as to give an expression equal to 100. In fact, unless the reader investigated the matter very closely, he might not suspect that so many ways are possible. It was for this reason that I added the condition that not only must the fewest possible signs be used, but also the fewest possible strokes. In this way we limit the problem to a single solution, and arrive at the simplest and therefore (in this case) the best result.

Just as in the case of magic squares there are methods by which we may write down with the neatest ease a large number of solutions, but not all the solutions, so there are several ways in which we may quickly arrive at dozens of arrangements of the "Digital Century," without finding all the possible arrangements. There is, in fact, very little principle in the thing, and there is no certain way of demonstrating that we have got the best possible solution. All I can say is that the arrangement I shall give as the best is the best I have up to the present succeeded in discovering. I will give the reader a few interesting specimens, the first being the solution usually published, and the last the best solution that I know.

  Signs.   Strokes.
1+2+3+4+5+6+7+(8×9)=100 (9 .. 18)
1+(2×3)+(4×5)-6+7+(8×9)=100 (11 .. 21)
(1+2-3-4)(5-6-7-8-9)=100 (9 .. 12)