From Wikisource
Jump to: navigation, search
This page has been proofread, but needs to be validated.

The differential equation thus reduces to

This is Papperitz's form[1] of the differential equation satisfied by Riemann's general hypergeometric function[2]


hence we have the result that

is a homogeneous function of (l, m, n, λ, μ, ν) of degree -1, satisfying the equation

When expressed in terms of x, y, z and w, it will thus be a solution of the equation

The various transformations[3] of the general hypergeometric function are easily obtained from this result. If we write U in the form

  1. Mathematische Annalen, T. XXV. (1885), p. 213.
  2. Abhandlungen d. K. Gesell. d. Wissenschaften zu Göttingen, Band VII. (1857), Gesammelte Werke, p. 63.
  3. See Whittaker's Analysis, p. 240. Forsyth's Theory of Linear Differential Equations, Vol. IV., p. 135.