Page:BraceStLouis1904.djvu/11

From Wikisource
Jump to navigation Jump to search
This page has been validated.
THE ETHER AND MOVING MATTER
115

in the two systems, the electrons must have different masses depending on whether their vibrations are parallel or perpendicular to the velocity of translation. This startling conclusion of Lorentz is borne out by what we now know of the dependence of the effective mass of an electron upon what is taking place in the ether. Such an hypothesis as this would require that Michelson and Morley's experiment should always give a negative result.

Of electrical experiments on the drift of the ether we have one second order test carried out very recently by Trouton at the suggestion of the late Professor Fitzgerald. The latter, reasoning on the condition of a magnetic field produced by a charged condenser moving edgewise to the drift of the ether, and the consequent additional supply of energy of such a system on charging, thought that this might produce a mechanical drag on charging and an opposite impulse on discharging, just as might occur if the mass of earth were to become suddenly greater. This experiment was carried out in the form of a condenser mounted upon an arm carried by a delicate suspension, with negative results. A second and more sensitive test was made later in a modified form by Trouton and Noble. Since, edge on to the drift, we have a magnetic field, while at right angles it vanishes, the energy will vary with the azimuth, and we shall have a maximum in an azimuth of 45°. A delicate suspension carrying the armature of a condenser showed no movement, although the calculated effect was ten times the limit of observation. The negative results of these experiments may be accounted for on like assumptions with that of the Michelson and Morley experiment, namely a contraction or change in the dimensions of the condenser producing corresponding changes in density and potential difference of the charge.

The assumption of a contraction suggests at once, from what we know of transparent media, the anisotropic state which such media are thrown into under dimensional strain. Rayleigh has examined this question in the case of water, carbon disulphide, and glass without result. In the case of glass his sensibility was several times the calculated second order effect, and much more in case of liquids.

The degree of refinement to which the polariscopic test lends itself is perhaps beyond that of any other instance in physical application. Here then is an opportunity to examine the question beyond what theory has anticipated, and the test has been carried so as to reach safely a third order effect, with negative results. The experiments as performed by the writer consisted in sending a beam of sunlight plane polarized at 45° to the horizon, through 28.56 meters of water in a horizontal direction and examining the same by a sensitive elliptic analyzer. On rotating the entire system from the meridian, where the one component of vibration to the drift was parallel