Rewriting this in the form
(4′)
d
Δ
i
=
∂
Δ
i
∂
x
[
d
x
−
(
u
±
c
)
d
t
]
+
[
∂
Δ
i
∂
x
(
u
±
c
)
+
∂
Δ
i
∂
t
]
d
t
{\displaystyle d\Delta _{i}={\frac {\partial \Delta _{i}}{\partial x}}\left[dx-\left(u\pm c\right)dt\right]+\left[{\frac {\partial \Delta _{i}}{\partial x}}\left(u\pm c\right)+{\frac {\partial \Delta _{i}}{\partial t}}\right]dt}
(the + or - sign going respectively with i = 1 or 2) we shall consider the second term in square brackets occurring as the
coefficient of dt. We have (cf. eq. (3))
∂
Δ
i
∂
x
(
u
±
c
)
+
∂
Δ
i
∂
t
{\displaystyle {\frac {\partial \Delta _{i}}{\partial x}}\left(u\pm c\right)+{\frac {\partial \Delta _{i}}{\partial t}}}
(5)
=
±
c
∂
Δ
i
∂
x
+
(
∂
f
∂
ρ
∂
ρ
∂
x
+
∂
f
∂
θ
∂
θ
∂
x
)
u
+
(
∂
f
∂
ρ
∂
ρ
∂
t
+
∂
f
∂
θ
∂
θ
∂
t
)
{\displaystyle =\pm c{\frac {\partial \Delta _{i}}{\partial x}}+\left({\frac {\partial f}{\partial \rho }}{\frac {\partial \rho }{\partial x}}+{\frac {\partial f}{\partial \theta }}{\frac {\partial \theta }{\partial x}}\right)u+\left({\frac {\partial f}{\partial \rho }}{\frac {\partial \rho }{\partial t}}+{\frac {\partial f}{\partial \theta }}{\frac {\partial \theta }{\partial t}}\right)}
±
(
u
∂
u
∂
x
+
∂
u
∂
t
)
{\displaystyle \pm \left(u{\frac {\partial u}{\partial x}}+{\frac {\partial u}{\partial t}}\right)}
.
Remembering that θ remains constant during the motion apd using the equations (1) we find that
(6)
∂
Δ
i
∂
x
(
u
±
c
)
+
∂
Δ
i
∂
t
=
(
±
c
∂
f
∂
θ
∓
1
ρ
∂
p
∂
θ
)
∂
θ
∂
x
{\displaystyle {\frac {\partial \Delta _{i}}{\partial x}}\left(u\pm c\right)+{\frac {\partial \Delta _{i}}{\partial t}}=\left(\pm c{\frac {\partial f}{\partial \theta }}\mp {\frac {1}{\rho }}{\frac {\partial p}{\partial \theta }}\right){\frac {\partial \theta }{\partial x}}}
.
Thus,
(7)
d
P
=
∂
P
∂
x
[
d
x
−
(
u
+
c
)
d
t
]
+
(
c
∂
f
∂
θ
−
1
ρ
∂
p
∂
θ
)
∂
θ
∂
x
d
t
{\displaystyle dP={\frac {\partial P}{\partial x}}\left[dx-\left(u+c\right)dt\right]+\left(c{\frac {\partial f}{\partial \theta }}-{\frac {1}{\rho }}{\frac {\partial p}{\partial \theta }}\right){\frac {\partial \theta }{\partial x}}dt}
.
and
(7)
d
Q
=
∂
Q
∂
x
[
d
x
−
(
u
−
c
)
d
t
]
−
(
c
∂
f
∂
θ
−
1
ρ
∂
p
∂
θ
)
∂
θ
∂
x
d
t
{\displaystyle dQ={\frac {\partial Q}{\partial x}}\left[dx-\left(u-c\right)dt\right]-\left(c{\frac {\partial f}{\partial \theta }}-{\frac {1}{\rho }}{\frac {\partial p}{\partial \theta }}\right){\frac {\partial \theta }{\partial x}}dt}
.
Now for a perfect gas (with a ratio of specific heats γ) we have
(9)
p
=
A
2
θ
γ
ρ
γ
{\displaystyle p=A^{2}\theta ^{\gamma }\rho ^{\gamma }}
.