Page:Cold Nuclear Fusion A Hypothesis.pdf/4

From Wikisource
Jump to navigation Jump to search
This page needs to be proofread.

that bond? Is it possible that special circumstances apply, for example similar to the situation in which carbon dioxide and water—both types of molecules having high-strength chemical bonds—can almost effortlessly combine to form carbonic acid?


6. Background: Excess Heat Production in Special Electrolytic Cells

In 1989 the original cold fusion experiment was announced. Heavy water was electrolyzed using palladium electrodes and individual atoms of deuterium, released by the electrolysis process, may be presumed to have permeated into the palladium (one electrode only). In some of the test-cells, after a certain amount of electrolysis had occurred, a quantity of heat began to mysteriously appear. The researchers were unable to explain the source and magnitude of that heat, except by invoking nuclear fusion reactions between deuteriums inside the palladium. Apparently even the simple and reasonable chemical reaction H+H->(H)2 (involving deuterium and not ordinary hydrogen atoms), by occurring inside the solid palladium electrode, was not energetic enough to explain the observed heat (not to mention a couple of explosions that were claimed to have happened). Note that per Part Five, it might not be so reasonable to expect the H+H->(H)2 chemical reaction to occur, if it is normal for hydrogen molecules to break apart when being packed into the metal.


7. The Controversy

In response to the announcement, many physicists concluded that the experiment must have contained some sort of flaw. Where was the radioactive and easily detectable nuclide tritium that is commonly produced in fusions between deuterons? Where were the gamma rays? And where were the irradiated-into-radioactivity pieces of laboratory equipment, due to neutrons that are also commonly released in fusions between deuterons? How could deuterium atoms lose their electrons and approach each other closely enough to fuse? And worst of all, why was the experiment so difficult to duplicate? (But even the expert chemists who announced the discovery could not produce excess heat every time; why should physicists that are generally less-expert at chemistry expect it to be easy?)

There is some irony in the fact that the most-desired fusion reaction, from the theoretical standpoint, is D+D->He4, and the possibility that cold fusion can deliver it is ignored while physicists ask where the reaction products are, from less-desired fusion reactions!


8. The Hypothesis

The author hopes that Part Five of this document adequately explains how individual deuterium atoms, once released by electrolysis, could exist in "bare" form inside solid palladium. That is, one of the two "obvious" questions stated in Part Seven may have an acceptable answer. And certainly there is no reason to worry about how whole molecules can break apart, if the deuterium/hydrogen enters the palladium as individual atoms, thanks to electrolysis.

Perhaps one way to verify that part of the hypothesis is to try pressuring pure deuterium gas into a piece of palladium. If excess heat appears after enough gas has been added, then using electrolysis is not necessary, and the excess heat would still need to be explained. Note that in this particular case the simple chemical reaction H+H->(H)2 cannot be the answer, simply because this experiment starts with deuterium molecules (H2)2, and nothing special was done to break them apart. As Sherlock Holmes pointed out: "When the impossible has been eliminated, then whatever remains, however improbable, must be the truth." If fusion is indeed occurring inside the palladium, then deuterium atoms must give up their electrons somehow, first. Part Five described something that may be improbable, hydrogen being an alloying substance, but can any reader show that it is impossible?

Next, the lack of tritium and neutrons is easily explained if the particular fusion reaction that occurs is always the ideal D+D->He4. However, that reaction yields considerably more energy than the reactions that yield tritium (plus a proton) or a neutron (plus He3), and does not offer any easy way to "dump" that energy. The normal way for the reaction energy to be carried off, in fact, is for one of the other two reactions to occur! This hypothesis therefore must offer a mechanism for carrying away the very considerable energy of the ideal deuteron-fusion reaction, even to the extent that no gamma rays need be produced.

Let us approach that mechanism by first considering muon catalysis in more detail. It has already been described how two virtual pions can, at maximum range, begin the process by which the strong nuclear force can cause two nearby deuterons to eventually fuse. Note that for one of the pions to reach the nucleus of the muonic atom, it must pass through the "shell" of the orbiting muon. That was described as being a fairly dense thing, in comparison to the electron shell around an ordinary atom. However, the virtual pion is a single particle and qualifies as being even "denser," so it can be expected to pass through the muon shell. Nevertheless, both the pion and the muon are electrically charged, and while the virtual pion exists, it is identical to a non-virtual pion. Therefore it is completely reasonable to think that the muon and the pion should interact with each other through the electromagnetic force. What will the result be?

The virtual pion is very likely travelling at high speed toward the nucleus of the muonic atom (when virtual particles pop into existence, they may be moving at any speed up to almost the speed of light). When it is absorbed by a nucleus some potential energy becomes converted into kinetic energy (the nucleus starts to move somewhere). The amount that gets converted depends only on how much time has passed since the virtual pion popped into existence (the more time, the less potential energy is converted), and has nothing to do with the speed of the pion at the moment of absorption. This means that the pion could collide with the muon and pass some energy to it, before being absorbed! The "bookkeeping" of virtual-energy events will then require that, during the absorption of the virtual pion, the converted potential energy will be divided into some kinetic energy for the nucleus and some kinetic energy for the muon.

There will be many virtual pions involved in causing two deuterons to fuse. There will be many opportunities for interactions with the muon to give it more kinetic energy. And perhaps some percentage of the time (25%?) the muon will gain so much energy, at the expense of the colliding deuterons, that when they finally fuse they will stick together as a helium-4 nucleus.

Inside a piece of deuterium-soaked palladium, we now