3. The Mechanical Action of Radiation on a Bounding Surface under the LorentzEinstein Transformation.
M. Planck^{[1]} in a recent paper has shewn, from thermodynamic considerations, that the pressure of radiation in equilibrium in an enclosure must be independent of the motion of that enclosure, and obtains relations between the energy per unit volume, and the temperature of the radiation when considered at rest and in motion in turn. Inasmuch as energy and pressure are independent of thermodynamics, it seems appropriate to shew here that Planck's results for those quantities are an immediate result of the foregoing transformation.
Taking the expression for the force per unit area on a moving surface,^{[2]}
this being a vector equation, we adapt it to the case where the surface is moving in the direction of the axis of x with velocity v.
The equations of the transformation are
Let the element of area upon which p' acts be ds, the normal having direction cosines (l, m, n), and let the transformed area be dS, with normal (L, M, N).
Then
Making these substitutions in p' and reducing, we obtain
where is the component pressure per unit area on dS at rest as given by the electric and magnetic intensities E, H.
Likewise

 ↑ Annalen der Physik, xxvi, No. 6 (1908).
 ↑ Cf. Abraham, Theorie der Elektricität, II, p. 333. Notice that in this expression
so that e', h' are not the electric and magnetic intensities in the LorentzEinstein transformation.