Page:Das Relativitätsprinzip und seine Anwendung.djvu/14

From Wikisource
Jump to navigation Jump to search
This page has been proofread, but needs to be validated.
Fig. 6.

The second remark is based on the transformation equations for the electric moment (p. 84), which shows the impossibility (because the magnetization occurs in them) to clearly distinguish between polarization and magnetization electrons. In a magnetized body , as seen from a reference system, it can rather be , while is different from zero in another reference system. This shall now be applied to a special case, where we confine ourselves to magnitudes of first order. The considered body (e.g. a steel magnet) shall contain only conduction electrons and such ones (when the body is at rest) which produce , yet not ; it shall have the shape of an infinitely extended even plate, bounded by two planes : the middle plane is made by us to the -plane (Fig. 6). When it is at rest, a constant magnetization may exist in the -direction, while . If the body acquires the velocity in the -direction, then an observer not participating at the motion, is observing the electric polarization

Now we imagine two conductors at both sides of the body, which together with it are forming two equal condensers, and they shall be short circuited by a wire (from to ). When in motion, charges will arise upon now, which can be calculated as follows. Since it is evidently impossible that a current exists in the -direction, it is or . Since the process is stationary, it becomes ; then the existence of a potential follows from . If is the thickness of the plate, then one has

From the symmetry of the arrangement if evidently follows

and because the plates are short circuited, it must be

;

from that if follows

If is the capacity of one of the two condensers, then the charge of the plate becomes equal to

and obtains the oppositely equal amount.